Skip to main content
Log in

Prins cyclization of isoprenol with various aldehydes using MoO3/SiO2 as a catalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

MoO3/SiO2 was used as a catalyst of the Prins cyclization of isoprenol with various aldehydes, with isovaleraldehyde chosen as a model substance. Two catalyst preparation methods, impregnation and sol–gel, were applied and the differences between their structure and catalytic activity were studied. The prepared catalysts were characterized by available methods (XRD, XRF, N2 adsorption, SEM and TGA). The catalyst prepared by sol–gel has a better dispersion of molybdenum oxide on the support and contains a lower amount of MoO3 crystallites compared to the impregnation method. A higher yield of the desired product (substituted tetrahydropyranol) was achieved using the catalyst prepared by sol–gel (51%) in comparison with the impregnation method (45%). Changing the molybdenum oxide amount in the catalyst had no effect on the activity or selectivity but an increase of the total catalyst amount in the reaction mixture increased the reaction rate. The addition of water had a positive effect on the selectivity of the desired product (a yield up to 60%) but decreased the reaction rate. The prepared catalyst can be reused at least four times in this reaction without any loss of activity or selectivity and it can also be used in the Prins cyclization of isoprenol with various aldehydes. The advantages of MoO3/SiO2 are its heterogeneous state in the reaction, simple preparation, availability and low cost of raw materials, reusability and activity. The activity is comparable with other heterogeneous catalysts used previously in this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prins HJ (1919) Chem Weekbl 16:1072–1073

    CAS  Google Scholar 

  2. Olier C, Kaafarani M, Gastaldi S, Bertrand MP (2010) Tetrahedron 66:413–445

    Article  CAS  Google Scholar 

  3. Rychnovsky SD, Hu Y, Ellsworth B (1998) Tetrahedron Lett 39:7271–7274

    Article  CAS  Google Scholar 

  4. Al-Mutairi EH, Crosby SR, Darzi J, Harding JR, Hughes RA, King CD, Simpson TJ, Smith RW, Willis CL (2001) Chem Commun (9):835–836

  5. Li J, Li C-J (2001) Tetrahedron Lett 42:793–796

    Article  CAS  Google Scholar 

  6. Borah M, Gogii P, Indukuri K, Saikia AK (2015) J Org Chem 80:2641–2648

    Article  CAS  Google Scholar 

  7. Vyskočilová E, Rezková L, Vrbková E, Paterová I, Červený L (2016) Res Chem Intermed 42:725–733

    Article  Google Scholar 

  8. Williams PH, Ballard SA (1947) US 2422648

  9. Hatano A, Iwasb Y (1977) Bull Chem Soc Jpn 50:2203–2204

    Article  CAS  Google Scholar 

  10. Tsui GC, Liu L, List B (2015) Angew Chem Int Ed 54:7703–7706

    Article  CAS  Google Scholar 

  11. Zhao L-M, Dou F, Sun R, Zhang A-L (2014) Synlett 25:1431–1434

    Article  Google Scholar 

  12. Kataoka K, Ode Y, Matsumoto M, Nokami J (2006) Tetrahedron 62:2471–2483

    Article  CAS  Google Scholar 

  13. Macedo A, Wendler EP, Dos Santos AA, Zukerman-Schpector J, Tiekink RT (2010) J Braz Soc 21:1563–1571

    Article  CAS  Google Scholar 

  14. Shao L-X, Qi M-H, Shi M (2008) Tetrahedron Lett 49:165–168

    Article  CAS  Google Scholar 

  15. Barbero A, Diez-Varga A, Pulido FJ (2013) Org Lett 20:5234–5237

    Article  Google Scholar 

  16. Theng K, Liu X, Qin S, Xie M, Lin L, Hu C, Feng X (2012) J Am Chem Soc 134:17564–17573

    Article  Google Scholar 

  17. Pérez S, Minarda PO, Cruz DA, Fernández I, Martin VS, Padrón JI (2015) Synthesis 47:1791–1798

    Article  Google Scholar 

  18. Yang Y, Jia P, Liu S, Yu W (2012) Chin J Chem 30:1439–1444

    Article  CAS  Google Scholar 

  19. Kočovský P, Ahmed G, Šrogl J, Malkov AV, Steele J (1999) J Org Chem 64:2765–2775

    Article  Google Scholar 

  20. Breugst M, Grée R, Houk KN (2013) J Org Chem 78:9892–9897

    Article  CAS  Google Scholar 

  21. Telalović S, Ramanathan A, Ng JF, Maheswari R, Kwakernaak C, Soulimani F, Brouver HC, Chuah GK, Weckhuysen BM, Hanfeld U (2011) Chem Eur J 17:2077–2088

    Article  Google Scholar 

  22. Vyskočilová E, Krátká M, Veselý M, Vrbková E, Červený L (2016) Res Chem Intermed 42:6991–7003

    Article  Google Scholar 

  23. Li G, Gu Y, Ding Y, Zhang H, Wang J, Gao Q, Yan L, Suo J (2004) J Mol Catal A Chem 218:147–152

    Article  CAS  Google Scholar 

  24. Yadav JS, Reddy BVS, Kumar GGKSN, Aravind S (2008) Synthesis 3:0395–0400

    Article  Google Scholar 

  25. More GP, Rane M, Bhat SV (2012) Green Chem Lett Rev 5:13–17

    Article  CAS  Google Scholar 

  26. Gralla G, Beck K, Klos M, Griesbach H (2011) US 0306799

  27. Baishya G, Sarmah B, Hazarika N (2013) Syntlett 24:1137–1141

    Article  CAS  Google Scholar 

  28. Ten Dam J, Badloe D, Ramanathan A, Djanashvili K, Kapteijn F, Hanefeld U (2013) Appl Catal A 468:150–159

    Article  Google Scholar 

  29. Stekrova M, Mäki-Arvela P, Kumar N, Behravesh E, Aho A, Balme Q, Volcho KP, Salakhutdinov NF, Murzin DY (2015) J Mol Catal A Chem 410:260–270

    Article  CAS  Google Scholar 

  30. Amrute AP, Sahoo S, Bordoloi A, Hwang YK, Hwang J-S, Halligudi SB (2009) Catal Commun 10:1404–1409

    Article  CAS  Google Scholar 

  31. Huang X, Liu J, Chen J, Xu Y, Shen W (2006) Catal Lett 108:79–86

    Article  CAS  Google Scholar 

  32. Lou Y, Zhang Q, Wang H, Wang Y (2007) J Catal 250:365–368

    Article  CAS  Google Scholar 

  33. Song Z, Minura N, Tsubota S, Fujitani T, Oyama ST (2008) Catal Lett 121:33–38

    Article  CAS  Google Scholar 

  34. Bian L, Wang SP, Ma XB (2014) Kinet Catal 55:763–769

    Article  CAS  Google Scholar 

  35. Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M, Michorczyk P (2006) Appl Catal A 312:213–219

    Article  CAS  Google Scholar 

  36. Haufe R, Föllinger T (2013) EP 2832716

  37. Marakatti VS, Mumbaraddi D, Shanbhag GV, Halgeri AB, Maradur SP (2015) RSC Adv 5:93452–93462

    Article  CAS  Google Scholar 

  38. Miao Y, Lu G, Liu X, Guo Y, Wang Y, Guo Y (2009) J Mol Catal A Chem 306:17–22

    Article  CAS  Google Scholar 

  39. Chang J, Wang A, Liu J, Li X, Hu Y (2010) Catal Today 149:122–126

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was realized within the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability” ((NPU I LO1613) MSMT-43760/2015). We also acknowledge grant project GACR 16-25747S. M. Lhotka is acknowledged for nitrogen adsorption measurement and M. Veselý for SEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliška Vyskočilová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekerová, L., Vyskočilová, E. & Červený, L. Prins cyclization of isoprenol with various aldehydes using MoO3/SiO2 as a catalyst. Reac Kinet Mech Cat 121, 83–95 (2017). https://doi.org/10.1007/s11144-016-1131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1131-5

Keywords

Navigation