Skip to main content
Log in

One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work describes the synthesis of LaFeO3 oxide, using a one-step hydrothermal synthesis route, to obtain a solid with useful superficial, morphological and textural properties for applications in steam methane reforming reaction. The synthesis process starts from the corresponding metal nitrates of lanthanum and iron dissolved in deionized water in well-defined concentration, and the dissolution of KOH as mineralizing agent. The reaction is developed in a Teflon-lined stainless steel autoclave at 300 °C for 14 days. The composition and surface area were determined with X-ray fluorescence and nitrogen adsorption isotherms, confirming the basic stoichiometry of oxide and a high active area. The crystalline structure was evaluated with X-ray diffraction analysis, showing a pure orthorhombic perovskite phase. Temperature programmed reduction results show the development of three single steps at different temperatures, kinetically detectable and related with reduction of component oxides. Scanning and transmission electron microscopy results, showed a remarkable degree of crystallization, favoring a specific morphology as result of the low consolidation temperature of the perovskite phase. The catalytic test, analyzed by means of steam methane reforming action, performed along 240 h on stream, reveals a light deactivation rate, decreasing progressively 7.1 % until 60 % of methane conversion, indicating the improved morphological and surface characteristics of solid for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li F, Liu Y, Sun Z, Liu R, Kou C, Zhao Y, Zhao D (2011) Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids. Mat Lett 65:406–408

    Article  CAS  Google Scholar 

  2. Phokha S, Pinitsoontor S, Rujirawat S, Maensiri S (2015) Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Phys B 476:55–60

    Article  CAS  Google Scholar 

  3. Shikha P, Kang TS, Randhawa BS (2015) Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles. J All Comp 625:336–345

    Article  CAS  Google Scholar 

  4. Cousin RA (1990) Preparation of mixed oxides: a review. Mater Sci Eng A 130:119–125

    Article  Google Scholar 

  5. Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci 320:13–41

    Article  CAS  Google Scholar 

  6. Rosa R, Ponzoni C, Veronesi P, Sora IN, Felice V, Leonelli C (2015) Solution combustion synthesis of La1-xSrxFe1-yCuyO3±w (x = 0, 0.2; y = 0, 0.2) perovskite nanoparticles: conventional vs. microwaves ignition. Ceram Int 41:7803–7810

    Article  CAS  Google Scholar 

  7. Yang C, Jiang J, Liu X, Yin C, Deng C (2016) Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties. J Mag Mag Mat 404:45–52

    Article  CAS  Google Scholar 

  8. Zhang D, Cheng Z, Cheng J, Shi F, Yang X, Zheng G, Cao M (2016) Hydrothermal preparation and characterization of sheet-like (KxNa1-x)NbO3 perovskites. Ceram Int 42:9073–9078

    Article  CAS  Google Scholar 

  9. Moure C, Peña O (2015) Recent advances in perovskites: processing and properties. Prog Sol State Chem 43:123–148

    Article  CAS  Google Scholar 

  10. Athayde DD, Souza DF, Silva AMA, Vasconcelos D, Nunesa EHM, Diniz da Costa JC, Vasconcelos WL (2016) Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42:6555–6571

    Article  CAS  Google Scholar 

  11. Zhou Z, Guo L, Yang H, Liu Q, Ye F (2014) Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J All Comp 583:21–31

    Article  CAS  Google Scholar 

  12. Singh C, Jauhar S, Kumar V, Singh J, Singhal S (2015) Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mat Chem Phys 156:188–197

    Article  CAS  Google Scholar 

  13. Evdou A, Zaspalis V, Nalbandian L (2016) Ferrites as redox catalysts for chemical looping processes. Fuel 165:367–378

    Article  CAS  Google Scholar 

  14. Tomaszewski PE (2013) The uncertainty in the grain size calculation from X-ray diffraction data. Phase Trans 86:260–266

    Article  CAS  Google Scholar 

  15. Ifrah S, Kaddouri A, Gelin P, Leonard D (2007) Conventional hydrothermal process versus microwave-assisted hydrothermal synthesis of La1-xAgxMnO3±δ (x = 0, 0.2) perovskites used in methane combustion. Chimie 10:1216–1226

    Article  CAS  Google Scholar 

  16. Dixon CAL, Kavanagh CM, Knight KS, Kockelmann W, Morrison FD, Lightfoot P (2015) Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3. J Sol State Chem 230:337–342

    Article  CAS  Google Scholar 

  17. Kaiwen Z, Xuehang W, Wenwei W, Jun X, Siqi T, Sen L (2013) Nanocrystalline LaFeO3 preparation and thermal process of precursor. Adv Pow Tech 24:359–363

    Article  Google Scholar 

  18. Toniolo FS, Magalhães RNS, Perez CAC, Schmal M (2012) Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane. Appl Catal B 117:156–166

    Article  Google Scholar 

  19. Lao L, Aguirre A, Tran A, Wu Z, Durand H, Christofides PD (2016) CFD modeling and control of a steam methane reforming reactor. Chem Eng Sci 148:78–92

    Article  CAS  Google Scholar 

  20. Fang H, Kun Z, Zhen H, Xin L, Guoqiang W, Haibin L (2013) Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane. Chin J Catal 34:1242–1249

    Article  Google Scholar 

  21. Wei Y, Zhao Z, Jiao J, Liu J, Duan A, Jiang G (2015) Facile synthesis of three-dimensionally ordered macroporous LaFeO3-supported gold nanoparticle catalysts with high catalytic activity and stability for soot combustion. Catal Tod 245:37–45

    Article  CAS  Google Scholar 

  22. Li H, Fu R, Duan W, Jiang Z (2016) The preparation effect on activity and thermal stability of La0.8Ca0.2FeO3 perovskite honeycombs dispersed by MgAl2O4 spinel washcoat for catalytic combustion of dilute methane. J Environ Chem Eng 4:2187–2195

    Article  CAS  Google Scholar 

  23. Gómez-Cuaspud JA, Schmal M (2013) Nanostructured metal oxides obtained by means polymerization-combustion at low temperature for CO selective. Int J Hyd Energ 38:7458–7468

    Article  Google Scholar 

  24. Arandiyan H, Chang H, Liu C, Peng Y, Li J (2013) Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: highly catalytic activity for methane combustion. J Mol Catal A 378:299–306

    Article  CAS  Google Scholar 

  25. Ji K, Dai H, Deng J, Song L, Xie S, Han W (2013) Glucose assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. J Sol Stat Chem 199:164–170

    Article  CAS  Google Scholar 

  26. Aliotta C, Liotta LF, Deganello F, La Parola V, Martorana A (2016) Direct on La1−xSrxCr1−yFeyO3−δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells. Appl Catal B 180:424–433

    Article  CAS  Google Scholar 

  27. Khine MSS, Chen L, Zhang S, Lin J, Jiang SP (2013) Syngas production by catalytic partial oxidation of methane over (La0.7A0.3)BO3 (A = Ba, Ca, Mg, Sr, and B = Cr or Fe) perovskite oxides for portable fuel cell applications. Int J Hyd Energ 38:13300–13308

    Article  CAS  Google Scholar 

  28. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65–71

    Article  CAS  Google Scholar 

  29. Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z (2016) Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Appl Energ 168:193–203

    Article  CAS  Google Scholar 

  30. Thalinger R, Gocyl M, Heggen M, Dunin-Borkowski R, Grünbacher M, Stöger-Pollach M, Schmidmair D, Klötzer B, Penner S (2016) Ni–perovskite interaction and its structural and catalytic consequences in methane steam reforming and methanation reactions. J Catal 337:26–35

    Article  CAS  Google Scholar 

  31. Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energ 151:143–156

    Article  CAS  Google Scholar 

  32. Nguyen TH, Łamac A, Krzton A, Liszk B, Djéga-Mariadassou G (2016) Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps. Appl Catal B 182:385–391

    Article  CAS  Google Scholar 

  33. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mat Sci 72:141–337

    Article  CAS  Google Scholar 

  34. Wierzbicki TA, Lee IC, Gupta AK (2016) Recent advances in catalytic oxidation and reformation of jet fuels. Appl Energ 165:904–918

    Article  CAS  Google Scholar 

  35. Palcheva R, Olsbye U, Palcut M, Rauwel P, Tyuliev G, Velinov N, Fjellvåg HH (2015) Rh promoted La0.75Sr0.25(Fe0.8Co0.2)1−xGaxO3 perovskite catalysts: characterization and catalytic performance for methane partial oxidation to synthesis gas. Appl Surf Sci 357:45–54

    Article  CAS  Google Scholar 

  36. Marinho ALA, Rabelo-Neto RC, Noronha FB, Mattos LV (2016) Steam reforming of ethanol over Ni-based catalysts obtained from LaNiO3 and LaNiO3/CeSiO2 perovskite-type oxides for the production of hydrogen. Appl Catal A 520:53–64

    Article  CAS  Google Scholar 

  37. Yang X, Da J, Yu H, Wang H (2016) Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process. Fuel 179:353–361

    Article  CAS  Google Scholar 

  38. Tho ND, Van Huong D, Ngan PQ, Thai GH, Thu DTA, Thu DT, Tuoi NTM, Toan NN, Giang HT (2016) Effect of sintering temperature of mixed potential sensor Pt/YSZ/LaFeO3 on gas sensing performance. Sens Act B 224:747–754

    Article  CAS  Google Scholar 

  39. De Lima SM, Assaf JM (2006) Ni–Fe Catalysts Based on perovskite-type oxides for dry reforming of methane to syngas. Catal Lett 108:63–70

    Article  CAS  Google Scholar 

  40. Xenophon EV (2003) Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrogen Energy 28(10):1045–1063

    Google Scholar 

  41. Tsipouriari VA, Verykios XE (1999) Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques. J Catalysis 187(1):85–94

    Article  CAS  Google Scholar 

  42. Choi J, Kim B, Song SH, Park JS (2016) A composite cathode with undoped LaFeO3 for protonic ceramic fuel cells. Int J Hyd Energ 41:9619–9626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo. A. Gómez-Cuaspud.

Ethics declarations

Conflict of interest

The authors whose names are listed in present manuscript, certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Cuaspud, J.A., Vera-López, E., Carda-Castelló, J.B. et al. One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. Reac Kinet Mech Cat 120, 167–179 (2017). https://doi.org/10.1007/s11144-016-1092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1092-8

Keywords

Navigation