Skip to main content
Log in

Pt supported TiO2-nanofibers and TiO2-nanopowder as catalysts for glycerol oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Novel TiO2 nanofiber supported platinum catalysts Pt/NF–TiO2 were synthesized and compared with TiO2 nanopowder supported catalysts Pt/NP–TiO2 in selective glycerol oxidation. It was found that Pt/NF–TiO2 and Pt/NP–TiO2 composites are catalytically active in alkaline glycerol solutions; glyceric acid is obtained as the main product of reaction. Catalyst activity and selectivity dependency on NaOH initial concentration, oxygen pressure and n(glycerol)/n(Pt) ratio were studied. Selectivity to glyceric acid of 63 % with full glycerol conversion and selectivity of 68 % with 95 % glycerol conversion is obtained correspondingly over Pt/NF–TiO2 and Pt/NP–TiO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okoye PU, Hameed BH (2016) Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew Sustain Energy Rev 53:558–574

    Article  CAS  Google Scholar 

  2. Sproge E, Chornaja S, Dubencovs K, Zhizhkun S, Kampars V, Serga V, Kulikova L, Palcevskis E (2013) Selective liquid phase oxidation of glycerol to glyceric acid over novel supported Pt catalysts. J Serb Chem Soc 78:1359–1372

    Article  CAS  Google Scholar 

  3. Cornaja S, Kulikova L, Serga V, Kampars V, Dubencovs K, Zizkuna S, Muravjova O. Pat. EP 2606968B1 (20.01.2016)

  4. Sproge E, Chornaja S, Dubencovs K, Kampars V, Kulikova L, Serga V, Karashanova D (2015) Production of glycolic acid from glycerol using novel fine disperse platinum catalysts. Iop Conf Ser Mater Sci Eng 77:012026

    Article  Google Scholar 

  5. Chornaja S, Sproge E, Dubencovs K, Kulikova L, Serga V, Cvetkovs A, Kampars V (2014) Selective oxidation of glycerol to glyceraldehyde over novel monometallic platinum catalysts. Key Eng Mat 604:138–141

    Article  CAS  Google Scholar 

  6. Deng Y, Mao Y, Zhang X (2015) Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochem Eng J 103(15):256–262

    Article  CAS  Google Scholar 

  7. Sato S, Morita N, Kitamoto D, Yakushi T, Matsushita K, Habe H (2013) Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol. AMB Express 3:20

    Article  Google Scholar 

  8. Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Efficient synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 catalysts. Chem—A Eur J 16(25):7368–7371

    Article  CAS  Google Scholar 

  9. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, Oliveira RPS (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Tech 30:70–83

    Article  CAS  Google Scholar 

  10. Boonsaner A, Phuangnui J, Moonmangmee D (2010) Glyceric acid production by thermotolerant acetic acid bacteria. Proceeding of the 8th International Symposium on Biocontrol and Biotechnology. 254–259

  11. Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic oxidation of glycerol with air in platinum metals. Appl Catal A Gen 127:165–176

    Article  CAS  Google Scholar 

  12. Fordham P, Garcia R, Besson M, Gallezot P (1996) Selective oxidation with air of glycerol and oxygenated derivatives on platinum metals. Stud Surf Sci Catal 101:161–170

    Article  CAS  Google Scholar 

  13. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Selective oxidation of glycerol on a platinum–bismuth catalyst. Appl Catal A Gen 96:217–228

    Article  CAS  Google Scholar 

  14. Yang GY, Shao S, Ke YH, Liu CL, Ren HF, Dong WS (2015) PtAu alloy nanoparticles supported on thermally expanded graphene oxide as a catalyst for the selective oxidation of glycerol. RSC Adv 5:37112–37118

    Article  CAS  Google Scholar 

  15. Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L (2006) Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal 244:113–121

    Article  CAS  Google Scholar 

  16. Gil S, Marchena M, Sánchez-Silva L, Romero A, Sánchez P, Valverde JL (2011) Effect of the operation conditions on the selective oxidation of glycerol with catalysts based on Au supported on carbonaceous materials. Chem Eng J 178:423–435

    Article  CAS  Google Scholar 

  17. Olmos CM, Chinchilla LE, Rodrigues EG, Delgado JJ, Hungría AB, Blanco G, Pereira MFR, Órfão JJM, Calvino JJ, Chen X (2016) Synergistic effect of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl Catal B Environ (in Press)

  18. Skrzyńska E, Zaid S, Girardon J-S, Capron M, Dumeignil F (2015) Catalytic behaviour of four different supported noble metals in the crude glycerol oxidation. Appl Catal A Gen 499:89–100

    Article  Google Scholar 

  19. Ftouni J, Villandier N, Auneau F, Besson M, Djakovitch L, Pinel C (2015) From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: the influence of support. Catal Today 257:1–7

    Article  Google Scholar 

  20. Zhang M, Liang D, Nie R, Lu X, Chen P, Hou Z (2012) Oxidation of biodiesel glycerol over Pt supported on different sized carbon supports in base-free solution. Chin J Catal 33(7–8):1340–1346

    Article  CAS  Google Scholar 

  21. Gao J, Liang D, Chen P, Hou Z, Zheng X (2009) Oxidation of glycerol with oxygen in a base-free aqueous solution over Pt/AC and Pt/MWNTs catalysts. Catal Letters 130:185–191

    Article  CAS  Google Scholar 

  22. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336

    Article  CAS  Google Scholar 

  23. Zhang M, Shi J, Sun Y, Ning W, Hou Z (2015) Selective oxidation of glycerol over nitrogen-doped carbon nanotubes supported platinum catalyst in base-free solution. Catal Commun 70:72–76

    Article  CAS  Google Scholar 

  24. Zhang M, Nie R, Wang L, Shi J, Du W, Hou Z (2015) Selective oxidation of glycerol over carbon nanofibers supported Pt catalysts in a base-free aqueous solution. Catal Commun 59:5–9

    Article  CAS  Google Scholar 

  25. Ning X, Li Y, Yu H, Peng F, Wang H, Yang Y (2016) Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J Catal 335:95–104

    Article  CAS  Google Scholar 

  26. Liang D, Gao J, Sun H, Chen P, Houand Z, Zheng X (2011) Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl Catal B 106:423–432

    Article  CAS  Google Scholar 

  27. Lei J, Duan X, Qian G, Zhou X, Chen D (2014) Size effects of pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition. Ind Eng Chem Res 53(42):16309–16315

    Article  CAS  Google Scholar 

  28. Tsuji A, Rao KTV, Nishimura S, Takagaki A, Ebitani K (2011) Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water. ChemSusChem 4(4):542–548

    Article  CAS  Google Scholar 

  29. Skrzyńska E, Wondołowska-Grabowska A, Capron M, Dumeignil F (2014) Crude glycerol as a raw material for the liquid phase oxidation reaction. Appl Catal A Gen 482:245–257

    Article  Google Scholar 

  30. Dimitratos N, Messi C, Porta F, Prati L, Villa A (2006) Investigation on the behaviour of Pt(0)/carbon and Pt(0), Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water. J Mol Catal A 256(1–2):21–28

    Article  CAS  Google Scholar 

  31. Prati L, Villa A, Campione C, Spontoni P (2007) Effect of gold addition on Pt and Pd catalysts in liquid phase oxidations. Top Catal 44:319–324

    Article  CAS  Google Scholar 

  32. Ning X, Yu H, Peng F, Wang H (2015) Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. J Catal 325:136–144

    Article  CAS  Google Scholar 

  33. Liang D, Gao J, Wang J, Chen P, Hou Z, Zheng X (2009) Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal Commun 10:1586–1590

    Article  CAS  Google Scholar 

  34. Wang FF, Shao S, Liu CL, Xu CL, Yang RZ, Dong WS (2015) Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution. Chem Eng J 264:336–343

    Article  CAS  Google Scholar 

  35. Gil S, Marchena M, Fernández CM, Sánchez-Silva L, Romeroa A, Valverde JL (2013) Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials. Appl Catal A-Gen 450:189–203

    Article  CAS  Google Scholar 

  36. Vajíček S, Štolcová M, Kaszonyi A, Mičušík M, Alexy P, Canton P, Onyestyák G, Harnos S, Lónyi F, Valyon J (2016) Gel-type ion exchange resin stabilized Pd–Bi nanoparticles for the glycerol oxidation in liquid phase. J Ind Eng Chem, (in Press)

  37. Shen Y, Li Y, Liu H (2015) Base-free aerobic oxidation of glycerol on TiO2-supported bimetallic Au–Pt catalysts. J Energy Chem 24(5):669–673

    Article  Google Scholar 

  38. Xu C, Du Y, Li C, Yang J, Yang G (2015) Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au–Pt bimetallic catalysts. Appl Catal B Environ 164:334–343

    Article  CAS  Google Scholar 

  39. Li Y, Chen S, Xu J, Zhang H, Zhao Y, Wang Y, Liu Z (2014) Ni promoted Pt and Pd catalysts for glycerol oxidation to lactic acid. Clean—Soil, Air, Water 42(8):1140–1144

    Article  CAS  Google Scholar 

  40. Liu B, Aydil E (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  CAS  Google Scholar 

  41. Xu C, Zhan Y, Hong K, Wang G (2003) Growth and mechanism of titania nanowires. Solid State Commun 126:545–549

    Article  CAS  Google Scholar 

  42. Chung C, Chung T, Thomas C (2008) Rapid synthesis of titania nanowires by microwave-assisted hydrothermal treatments. Ind Eng Chem Res 47:2301–2307

    Article  CAS  Google Scholar 

  43. Pavasupree S, Suzuki Y, Yoshikawa S, Kawahata R (2005) Synthesis of titanate, TiO2(B), and anatase TiO2 nanofibers from natural rutile sand. J Solid State Chem 178(10):3110–3116

    Article  CAS  Google Scholar 

  44. Wang J, Yang G, Lyu W, Yan W (2016) Thorny TiO2 nanofibers: synthesis, enhanced photocatalytic activity and supercapacitance. J Alloy Compd 659:138–145

    Article  CAS  Google Scholar 

  45. Yousef A, Barakat NAM, EL-Newehy MH, Ahmed MM, Kim HY (2015) Catalytic hydrolysis of ammonia borane for hydrogen generation using Cu(0) nanoparticles supported on TiO2 nanofibers. Colloid Surface A 470:194–201

    Article  CAS  Google Scholar 

  46. Yousef A, El-Halwany MM, Barakat NAM, Al-Maghrabi MN, Kim HY (2015) Cu0-doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. J Ind Eng Chem 25:251–258

    Article  Google Scholar 

  47. Tong H, Tao X, Li D, Zhang L (2014) Preparation and characterization of doped TiO2 nanofibers by coaxial electrospining combined with sol-gel process. J Alloy Compd 586:274–278

    Article  CAS  Google Scholar 

  48. Yu YH, Chen YP, Cheng Z (2015) Microwave-assisted synthesis of rod-like CuO/TiO2 for high-efficiency photocatalytic hydrogen evolution. Int J Hydrog Energy 40(46):15994–16000

    Article  CAS  Google Scholar 

  49. Yunarti RT, Lee M, Hwang YJ, Choi JW, Suh DJ, Lee J, Kim IW, Ha JM (2014) Transition metal-doped TiO2 nanowire catalysts for the oxidative coupling of methane. Catal Commun 50:54–58

    Article  CAS  Google Scholar 

  50. Gazsi A, Schubert G, Pusztai P, Solymosi F (2013) Photocatalytic decomposition of formic acid and methyl formate on TiO2 doped with N and promoted with Au. Production of H2. Int J Hydrog Energy 38:7756–7766

    Article  CAS  Google Scholar 

  51. Barakat NAM, Ahmed E, Al Abdelkareem M, Farghali AA, Nassar MM, El-Newehy MH, Al-Deyab SS (2015) Ag, Zn and Cd-doped titanium oxide nanofibers as effective photocatalysts for hydrogen extraction from ammonium phosphates. J Mol Catal A 409:117–126

    Article  CAS  Google Scholar 

  52. Rodrigues EG, Pereira MFR, Chen X, Delgado JJ, Órfão JJM (2013) Selective Oxidation of Glycerol over Platinum-Based Catalysts Supported on Carbon Nanotubes. Ind Eng Chem Res 52(49):17390–17398

    Article  CAS  Google Scholar 

  53. Liang D, Gao J, Wang J, Chen P, Wei Y, Hou Z (2011) Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution. Catal Commun 12:1059–1062

    Article  CAS  Google Scholar 

  54. Li Y, Zaera F (2015) Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. J Catal 326:116–126

    Article  CAS  Google Scholar 

  55. Purushothaman RKP, Haveren JV, Es DSV, Melián-Cabrera I, Meeldijk JD, Heeres HJ (2014) An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl Catal B Environ 147:92–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chornaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chornaja, S., Sile, E., Drunka, R. et al. Pt supported TiO2-nanofibers and TiO2-nanopowder as catalysts for glycerol oxidation. Reac Kinet Mech Cat 119, 569–584 (2016). https://doi.org/10.1007/s11144-016-1067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1067-9

Keywords

Navigation