Skip to main content
Log in

Ta2O5 modified γ-Al2O3 as a methanol dehydration component in the single-step synthesis of dimethyl ether from syngas

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ta2O5 modified γ-Al2O3 samples were prepared by impregnating with tantalum ethoxide, and mixed with methanol synthesis component (Cu/Zn/Al2O3) to form the bi-functional catalysts. They were applied in one step process of dimethyl ether synthesis from syngas. The characterization method of XRD, N2 adsorption, FTIR of adsorbed pyridine, H2-TPR and NH3-TPD and catalyst test were used to measure the impact of Ta2O5 on γ-Al2O3 and bi-functional catalysts. The results revealed that on Ta2O5 modified γ-Al2O3 samples, total number of acid sites increased because of appearance of medium acid sites, which contributed to the dimethyl ether formation and helped enhance the CO conversion. The weak acid strength shifted to weaker leading to a lower initial activation temperature of catalysts, which brought out a higher increment of dimethyl ether selectivity at relatively low temperature (230 °C). 6 wt% Ta2O5 modification was enough to obtain high selectivity and conversion of DME synthesis from syngas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demirbas A (2008) Energy sources part A—recovery utilization and environmental. Effects 30:1473–1483

    CAS  Google Scholar 

  2. Galadima A, Muraza O (2015) Int J Energ Res 39:1451–1478

    Article  Google Scholar 

  3. Prasad PS, Bae JW, Kang S-H, Lee YJ, Jun KW (2008) Fuel Process Technol 89:1281–1286

    Article  CAS  Google Scholar 

  4. Khoshbin R, Haghighi M (2013) J Nanosci Nanotechnol 13:4996–5003

    Article  CAS  Google Scholar 

  5. Ge Q, Huang Y, Qiu F, Li S (1998) Appl Catal A 167:23–30

    Article  CAS  Google Scholar 

  6. Aguayo AT, Erena J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522–5530

    Article  CAS  Google Scholar 

  7. Yaripour F, Baghaei F, Schmidt I, Perregaard J (2005) Catal Commun 6:147–152

    Article  CAS  Google Scholar 

  8. Ham HW, Jeong MH, Koo HM, Chung C-H, Bae JW (2015) Reac Kinet Mech Cat 116:173–189

    Article  CAS  Google Scholar 

  9. García-Trenco A, Martínez A (2012) Appl Catal A 411:170–179

    Article  Google Scholar 

  10. Song F, Tan Y, Xie H, Zhang Q, Han Y (2014) Fuel Process Technol 126:88–94

    Article  CAS  Google Scholar 

  11. Bae JW, Potdar HS, Kang SH, Jun KW (2008) Energy Fuel 22:223–230

    Article  CAS  Google Scholar 

  12. Kang SH, Bae JW, Kim HS, Dhar GM, Jun KW (2010) Energy Fuel 24:804–810

    Article  CAS  Google Scholar 

  13. Bae JW, Potdar HS, Kang SH, Jun KW (2008) Energy Fuel 22:223–230

    Article  CAS  Google Scholar 

  14. Palgunadi J, Yati I, Jung KD (2010) Reac Kinet Mech Cat 101:117–128

    Article  CAS  Google Scholar 

  15. Kim SM, Lee YJ, Bae JW, Potdar H, Jun KW (2008) Appl Catal A 348:113–120

    Article  CAS  Google Scholar 

  16. Khaleel A (2010) Fuel Process Technol 91:1505–1509

    Article  CAS  Google Scholar 

  17. Kang SH, Bae JW, Kim HS, Dhar GM, Jun KW (2010) Energy Fuel 24:804–810

    Article  CAS  Google Scholar 

  18. Hosseini SY, Nikou MRK (2012) J Am Sci 8:235–239

    Google Scholar 

  19. Liu D, Yao C, Zhang J, Fang D, Chen D (2011) Fuel 90:1738–1742

    Article  CAS  Google Scholar 

  20. Tan YS, Xie HJ, Cui HT (2005) J Fuel Chem Technol 33:602–606 (in Chinese)

    CAS  Google Scholar 

  21. Guiu G, Grange P (1995) J Catal 156:132–138

    Article  CAS  Google Scholar 

  22. Moradi GR, Nosrati S, Yaripor F (2007) Catal Commun 8:598–606

    Article  CAS  Google Scholar 

  23. Qi GX, Zheng XM, Fei JH, Hou ZY (2001) J Mol Catal A Chem 176:195–203

    Article  CAS  Google Scholar 

  24. Wang QX, Qiang X, Zhao BY, Xie YC, Tang YQ (1993) Chin J Catal 6:004 (in Chinese)

    Google Scholar 

  25. Bae JW, Potdar HS, Kang SH, Jun KW (2008) Energy Fuel 22:223–230

    Article  CAS  Google Scholar 

  26. Kang SH, Bae JW, Jun KW, Potdar HS (2008) Catal Commun 9:2035–2039

    Article  CAS  Google Scholar 

  27. Baek SC, Kang SH, Bae JW, Lee YJ, Lee DH, Lee KY (2011) Energy Fuel 25:2438–2443

    Article  CAS  Google Scholar 

  28. Bae JW, Kang SH, Lee YJ, Jun KW (2009) Appl Catal B 90:426–435

    Article  CAS  Google Scholar 

  29. Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Appl Catal A 276:251–255

    Article  CAS  Google Scholar 

  30. Ramos F, de Farias AD, Borges LEP, Monteiro J, Fraga MA, Sousa-Aguiar EF, Appel LG (2005) Catal Today 101:39–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The aurthors appropriate the financial support from the National Science and Technology Supporting Plan (No. 2007BAA08B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyong Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Zhang, H. et al. Ta2O5 modified γ-Al2O3 as a methanol dehydration component in the single-step synthesis of dimethyl ether from syngas. Reac Kinet Mech Cat 119, 585–594 (2016). https://doi.org/10.1007/s11144-016-1063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1063-0

Keywords

Navigation