Skip to main content
Log in

Regenerability of the CuO–ZnO–MnO/SAPO-18 catalyst used in the synthesis of dimethyl ether in a single step

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The study has focused on the regenerability of the CuO–ZnO–MnO/SAPO-18 (CZMn/S) bifunctional catalyst used in the direct synthesis of dimethyl ether (STD process) from H2 + CO + CO2 feeds. The runs have been conducted in a fixed bed reactor under the following conditions: 250–300 °C; 10–40 bar; 1.25–10.18 gcat h mol −1C ; time on stream, 5–30 h; CO2/CO molar ratio, 0–1; feeding H2 + CO + CO2 with a H2/COx molar ratio of 3. Coke deposition has been determined as the main deactivation cause, and both the measurement of the coke content and the identification of three types of coke have been carried out by means of temperature programmed oxidation analyses. Reaction-regeneration cycle runs have been carried out in a fixed bed isothermal reactor, concluding that it is possible to regenerate the bifunctional catalyst by the combustion of coke with air, at 300 °C (48 h). Under these conditions, the catalyst undergoes a slight Cu sintering in the first reaction-regeneration cycle but recovers completely the remaining activity in the successive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CC :

Coke content (wt%)

CZMn:

CuO–ZnO–MnO metallic function

CZMn/S:

CuO–ZnO–MnO/SAPO-18 bifunctional catalyst

DME, MeOH:

Dimethyl ether and methanol, respectively

\({\text{F}}_{{{\text{CO}}_{\text{x}} }}^{0} ,\;{\text{F}}_{{{\text{CO}}_{\text{x}} }}\) :

Molar flow rate of (CO + CO2) in the reactor inlet and outlet stream, respectively (mol/h) (Eqs. 1 and 2)

Fi :

Molar flow rate of the component i in the reactor outlet stream (mol/h) (Eqs. 13)

ni :

Number of carbon atoms in the i product (Eqs. 2 and 3)

P:

Pressure (bar)

SBET :

BET specific surface area (m2/g)

SCu, S′Cu :

Cu specific surface area (m2/gCu and m2/gcat, respectively)

T:

Temperature (K)

Vmicropore, Vp :

Micropore volume and total pore volume, respectively (cm3/g)

WGS:

Water gas shift reaction

\({\text{X}}_{{{\text{CO}}_{\text{x}} }}\) :

Conversion of CO + CO2, in carbon units (Eq. 1)

Yi, Si :

Yield and selectivity of the lump i, respectively (Eqs. 2 and 3, respectively)

References

  1. Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498

    Article  CAS  Google Scholar 

  2. Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Chem Eng Process Process Intensif 82:150–172

    Article  CAS  Google Scholar 

  3. Jia G, Tan Y, Han Y (2006) Ind Eng Chem Res 45:1152–1159

    Article  CAS  Google Scholar 

  4. Aguayo AT, Ereña J, Mier D, Arandes JM, Olazar M, Bilbao J (2007) Ind Eng Chem Res 46:5522–5530

    Article  CAS  Google Scholar 

  5. Aguayo AT, Ereña J, Sierra I, Olazar M, Bilbao J (2005) Catal Today 106:265–270

    Article  CAS  Google Scholar 

  6. Ereña J, Sierra I, Aguayo AT, Ateka A, Olazar M, Bilbao J (2011) Chem Eng J 174:660–667

    Article  Google Scholar 

  7. Chen WH, Lin BJ, Lee HM, Huang MH (2012) Appl Energy 98:92–101

    Article  CAS  Google Scholar 

  8. Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497–511

    Article  CAS  Google Scholar 

  9. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) Fuel 87:1014–1030

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang S, Benson T (2015) Fuel Process Technol 131:7–13

    Article  CAS  Google Scholar 

  11. Pérez-Uriarte P, Gamero M, Ateka A, Díaz M, Aguayo AT, Bilbao J (2016) Ind Eng Chem Res 55:1513–1521

    Article  Google Scholar 

  12. Ereña J, Vicente J, Aguayo AT, Olazar M, Bilbao J, Gayubo AG (2013) Appl Catal B 142–143:315–322

    Article  Google Scholar 

  13. Vicente J, Gayubo AG, Ereña J, Aguayo AT, Olazar M, Bilbao J (2013) Appl Catal B 130–131:73–83

    Article  Google Scholar 

  14. Hadipour A, Sohrabi M (2008) Chem Eng J 137:294–301

    Article  CAS  Google Scholar 

  15. Bonura G, Cordaro M, Cannilla C, Mezzapica A, Spadaro L, Arena F, Frusteri F (2014) Catal Today 228:51–57

    Article  CAS  Google Scholar 

  16. Sun J, Yang G, Yoneyama Y, Tsubaki N (2014) ACS Catal 4:3346–3356

    Article  CAS  Google Scholar 

  17. Liu RW, Qin ZZ, Ji HB, Su TM (2013) Ind Eng Chem Res 52:16648–16655

    Article  CAS  Google Scholar 

  18. Witoon T, Permsirivanich T, Kanjanasoontorn N, Akkaraphataworn C, Seubsai A, Faungnawakij K, Warakulwit C, Chareonpanich M, Limtrakul J (2015) Catal Sci Technol 5:2347–2357

    Article  CAS  Google Scholar 

  19. Ateka A, Sierra I, Ereña J, Bilbao J, Aguayo AT (2016) Fuel Process Technol 152:34–45

    Article  CAS  Google Scholar 

  20. Diban N, Urtiaga AM, Ortiz I, Ereña J, Bilbao J, Aguayo AT (2013) Chem Eng J 234:140–148

    Article  CAS  Google Scholar 

  21. Sierra I, Ereña J, Aguayo AT, Arandes JM, Olazar M, Bilbao J (2011) Appl Catal B 106:167–173

    CAS  Google Scholar 

  22. Zhang H, Li W, Xiao W (2012) Int J Chem Reactor Eng 10:A82

    Google Scholar 

  23. Ereña J, Sierra I, Olazar M, Gayubo AG, Aguayo AT (2008) Ind Eng Chem Res 47:2238–2247

    Article  Google Scholar 

  24. Ateka A (2014) Ph.D. Bilbao, Spain University of the Basque Country UPV/EHU

  25. Bauer F, Karge HG (2006) Mol Sieves 5:249–364

    Article  Google Scholar 

  26. Vicente J, Ereña J, Oar-Arteta L, Olazar M, Bilbao J, Gayubo AG (2014) Ind Eng Chem Res 53:3462–3471

    Article  CAS  Google Scholar 

  27. Ortega JM, Gayubo AG, Aguayo AT, Benito PL, Bilbao J (1997) Ind Eng Chem Res 36:60–66

    Article  CAS  Google Scholar 

  28. Aguayo AT, Gayubo AG, Olazar M, Ortega JM, Moran AL, Bilbao J (1999) Chem Eng Commun 176:43–63

    Article  CAS  Google Scholar 

  29. Castaño P, Elordi G, Olazar M, Aguayo AT, Pawelec B, Bilbao J (2011) Appl Catal B 104:91–100

    Article  Google Scholar 

  30. Elordi G, Olazar M, Lopez G, Castaño P, Bilbao J (2011) Appl Catal B 102:224–231

    Article  CAS  Google Scholar 

  31. Bai T, Zhang X, Wang F, Qu W, Liu X, Duan C (2016) J Energy Chem. doi:10.1016/j.jechem.2016.02.001

    Google Scholar 

  32. Ateka A, Pérez-Uriarte P, Sánchez-Contador M, Ereña J, Aguayo AT, Bilbao J (in press) Int J Hydrogen Energy

  33. Oar-Arteta L, Remiro A, Vicente J, Aguayo AT, Bilbao J, Gayubo AG (2014) Fuel Process Technol 126:145–154

    Article  CAS  Google Scholar 

  34. Vogel AP, van Dyk B, Saib AM (2016) Catal Today 259:323–330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the financial support of the Ministry of Economy and Competitiveness of the Spanish Government (CTQ2010-19188 and CTQ2013-46173-R), the FEDER funds, the Basque Government (Projects GIC/24-IT-220-07 and IT748-13) and the University of the Basque Country (UFI 11/39). Ainara Ateka is grateful for the Ph.D. grant from the Department of Education, University and Research of the Basque Government (BFI09.69).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainara Ateka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateka, A., Pérez-Uriarte, P., Sierra, I. et al. Regenerability of the CuO–ZnO–MnO/SAPO-18 catalyst used in the synthesis of dimethyl ether in a single step. Reac Kinet Mech Cat 119, 655–670 (2016). https://doi.org/10.1007/s11144-016-1057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1057-y

Keywords

Navigation