Skip to main content
Log in

Kinetic aspects of the influence of CO pressure on cyclohexene hydrocarbomethoxylation catalyzed by a diphosphine palladium system. Thermodynamic characteristics of some ligand exchange reactions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The effects of temperature and CO pressure on the rate of cyclohexene hydrocarbomethoxlyation catalyzed by the system of Pd(OAc)2/trans-2,3-bis(diphenylphosphinemethyl)norbornane (TBDPN)/p-toluenesulfonic acid (TsOH) system were studied. It was found that in the 358–373 K temperature range, reaction rates correlated with CO pressure with maximums in the range of 2.1–3.1 MPa. The results were interpreted via a hydride mechanism including diphosphine palladium complexes as intermediates, augmented with ligand exchange reactions, which lower palladium catalyst activity. The ascending branches of the reaction rate versus CO pressure curves are due to the CO acting as a reagent in the catalytic cycle, while the descending branches were interpreted in the framework of low reactivity Pd(TBDPN)(CO)2 complex formation at high CO pressures. Several effective rate constants were estimated at the 343–373 K range using least squares method. The effective activation energy was determined based on the temperature correlation with one of these constants. By analyzing the effective activation energies of cyclohexene hydrocarbomethoxylation, we were able to gauge the changes in enthalpy, entropy and Gibbs free energy in ligand exchange reactions between “ballast” palladium complexes, such as Pd(TBDPN)3, Pd(TBDPN)(CO)2 and [HPd(TBDPN)(CH3OH)]TsO. The relative stability ranges and formation entropies of these complexes were determined under the conditions of cyclohexene hydrocarbomethoxylation. Based on our understanding of the heating effect of ligand exchange reactions between Pd(TBDPN)(CO)2 and [HPd(TBDPN)(CH3OH)]TsO complexes, we determined that the binding energy of CO molecules is 7 kJ/mol higher than the binding energy of diphosphine TBDPN molecules (without chelate formation). Based on the entropy changes in ligand exchange reactions, we propose that the [HPd(TBDPN)(CH3OH)]TsO complex is practically undissociated in these conditions. The analysis of changes in Gibbs free energy showed that in palladium ligand exchange, under the conditions in question, Pd(TBDPN)3 formation is thermodynamically favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vavasori A, Cavinato G, Toniolo L (2001) J Mol Catal A: Chem 176:11–18

    Article  CAS  Google Scholar 

  2. Liu J, Heaton BT, Iggo JA, Whyman R (2004) Chem Commun, pp 1326–1327

  3. Cavinato G, Toniolo L, Vavasori A (2004) J Mol Catal A: Chem 219:233–240

    Article  CAS  Google Scholar 

  4. Amadio E, Cavinato G, Härter P, Toniolo L (2013) J Organomet Chem 745–746:115–119

    Article  Google Scholar 

  5. Rosales M, Pacheco I, Medira J, Fernandez J, Gonzalez A, Izquierdo R, Melean LG, Baricelli PJ (2014) Catall Lett 144:1717–1727

    Article  CAS  Google Scholar 

  6. Rodriguez CJ, Foster DF, Eastham GR, Cole-Hamilton DJ (2004) Chem Commun, pp 1720–1721

  7. Kron TE, Petrov ES (2003) Petrol Chem 43:375–378

    Google Scholar 

  8. Aver’yanov VA, Batashev SA, Sevostianova NT, Zarytovsky VM (2005) Catal Ind, pp 25–33

  9. Vavasori A, Toniolo L, Cavinato G (2003) J Mol Catal A: Chem 191:9–21

    Article  CAS  Google Scholar 

  10. Blanco C, Godard C, Zangrando E, Ruiz A, Claver C (2012) Dalton Trans 41:6980–6991

    Article  CAS  Google Scholar 

  11. Ionescu A, Laurenczy G, Wendt OF (2006) Dalton Trans, pp 3934–3940

  12. Grabulosa A, Frew JJR, Fuentes JA, Slawin AMZ, Clarke ML (2010) J Mol Catal A: Chem 330:18–25

    Article  CAS  Google Scholar 

  13. Noskov YG, Petrov ES (2001) Russ Chem Bull 50:1839–1843

    Article  CAS  Google Scholar 

  14. Tang C-M, Zeng Y, Yang X-G, Lei Y-C, Wang G-Y (2009) J Mol Catal A: Chem 314:15–20

    Article  CAS  Google Scholar 

  15. Kron TE, Terekhova MI, Noskov YG, Petrov ES (2001) Kinet Catal 42:182–188

    Article  CAS  Google Scholar 

  16. Kron TE, Terekhova MI, Petrov ES (2004) Kinet Catal 45:519–521

    Article  CAS  Google Scholar 

  17. Nifant’ev IE, Batashev SA, Toloraya SA, Tavtorkin AN, Sevostyanova NT, Vorobiev AA, Bagrov VV, Averyanov VA (2011) J Mol Catal A: Chem 350:64–68

    Article  Google Scholar 

  18. Nifant’ev IE, Sevostyanova NT, Averyanov VA, Batashev SA, Vorobiev AA, Toloraya SA, Bagrov VV, Tavtorkin AN (2012) Appl Catal A Gen 449:145–152

    Article  Google Scholar 

  19. Aver’yanov VA, Batashev SA, Sevost’yanova NT, Nosova NM (2006) Kinet Catal 47:375–383

    Article  Google Scholar 

  20. Aver’yanov VA, Sevost’yanova NT, Batashev SA, Demerlii AM (2013) Petrol Chem 53:39–45

    Article  Google Scholar 

  21. Averyanov VA, Sevostyanova NT, Batashev SA, Vorob’ev AA, Rodionova AS (2014) Russ J Phys Chem B 8:140–147

    Article  CAS  Google Scholar 

  22. Sevostyanova NT, Averyanov VA, Batashev SA, Rodionova AS, Vorob’ev AA (2014) Russ Chem Bull 63:837–842

    Article  CAS  Google Scholar 

  23. Aver’yanov VA, Sevost’yanova NT, Batashev SA, Nesolenaya SV (2006) Petrol Chem 46:405–414

    Article  Google Scholar 

  24. Aver’yanov VA, Sevost’yanova NT, Batashev SA (2008) Petrol Chem 48:287–295

    Article  Google Scholar 

  25. Nifant’ev I, Sevostyanova N, Batashev S, Vorobiev A, Tavtorkin A (2015) React Kinet Mech Catal 116:63–77

    Article  Google Scholar 

  26. Terekhova MI, Sigalov AB, Petrova NE, Petrov ES (1985) J Gen Chem USSR 55:944–945

    CAS  Google Scholar 

  27. Verspui G, Moiseev I, Sheldon RA (1999) J Organomet Chem 586:196–199

    Article  CAS  Google Scholar 

  28. Noskov YuG, Simonov AI, Petrov ES (2000) Kinet Catal 41:511–516

    Article  CAS  Google Scholar 

  29. Seayad A, Jayasree S, Damodaran K, Toniolo L, Chaudhari RV (2000) J Organomet Chem 601:100–107

    Article  CAS  Google Scholar 

  30. Terekhova MI, Petrova NE, Shifrina RR, Petrov ES (1988) J Gen Chem USSR 58:658–661

    CAS  Google Scholar 

  31. Bardi R, Piazzasi AM, Cavinato G, Toniolo L (1985) Inorg Chim Acta 102:99–103

    Article  CAS  Google Scholar 

  32. Bardi R, Del Pra A, Piazzasi AM, Toniolo L (1979) Inorg Chim Acta 35:L345–L346

    Article  CAS  Google Scholar 

  33. Cavinato G, Toniolo L (1979) J Mol Catal A: Chem 6:111–122

    Article  CAS  Google Scholar 

  34. Kiss G (2001) Chem Rev 101:3435–3456

    Article  CAS  Google Scholar 

  35. Seayad A, Kelkar AA, Toniolo L, Chaudhari RV (2000) J Mol Catal A: Chem 151:47–59

    Article  CAS  Google Scholar 

  36. Petrov ES, Noskov YG (1998) Ross Khim Zh 42:149–157

    CAS  Google Scholar 

  37. Yoshida H, Sugita N, Kudo K, Takezaki Y (1976) Bull Chem Soc Jpn 49:2245–2249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research within the framework of project no. 14-08-00535, and by the Russian Science Foundation, Grant no. 15-13-00053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Nifant’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nifant’ev, I., Sevostyanova, N., Batashev, S. et al. Kinetic aspects of the influence of CO pressure on cyclohexene hydrocarbomethoxylation catalyzed by a diphosphine palladium system. Thermodynamic characteristics of some ligand exchange reactions. Reac Kinet Mech Cat 119, 75–91 (2016). https://doi.org/10.1007/s11144-016-1048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1048-z

Keywords

Navigation