Skip to main content
Log in

Preparation, characterization and catalytic reactivity of WO3@PdO core@shell nanospheres in the Mizoroki–Heck reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Palladium oxide nanoparticles supported on tungsten oxide nanospheres were synthesized in one pot using an impregnation method. The prepared catalyst was thoroughly characterized by various physico-chemical methods. TEM images showed uniform dispersion of palladium oxide nanoparticles onto WO3 (~170–205 nm). The obtained WO3@PdO core@shell nanospheres exhibited excellent reactivity and stability in the Mizoroki–Heck cross-coupling reactions with different aryl halides and olefins. This catalyst can be easily recovered and reused in several runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heck RF (1985) Palladium reagents in organic synthesis. Academic Press, London

    Google Scholar 

  2. Heck RF, Nolley JP (1972) Kinetics of the reversible reaction of piperidine with 2,4-dinitroanisole in methanol solution. J Org Chem 37:2320–2322

    Article  CAS  Google Scholar 

  3. Esmaeilpour M, Javidi J, Dodeji FN, Hassannezhad H (2014) Fe3O4@SiO2-polymer-imid-Pd magnetic porous nanosphere as magnetically separable catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. J Iran Chem Soc 11:1703–1715

    Article  CAS  Google Scholar 

  4. Beletskaya IP, Cheprakov AV (2000) The Heck reaction as a sharpening stone of palladium catalysis. Chem Rev 100:3009–3066

    Article  CAS  Google Scholar 

  5. Verma S, LeBras J, Jain SL, Muzart J (2013) Nanocrystalline starch grafted palladium(II) complex for the Mizoroki–Heck reaction. Dalton Trans 42:14454–14459

    Article  CAS  Google Scholar 

  6. Tsuji J (1995) Palladium reagents and catalysts. Innovations in organic synthesis. Wiley, Chichester

    Google Scholar 

  7. Ohtaka A, Yamaguchi T, Teratani T, Shimomura O, Nomura R (2011) Linear polystyrene-stabilized PdO nanoparticle-catalyzed Mizoroki–Heck reactions in water. Molecules 16:9067–9076

    Article  CAS  Google Scholar 

  8. Kumar A, Agarwal M, Singh AK, Butcher RJ (2009) Palladium(II), platinum(II), ruthenium(II) and mercury(II) complexes of potentially tridentate Schiff base ligands of (E, N, O) type (E=S, Se, Te): synthesis, crystal structures and applications in Heck and Suzuki coupling reactions. Inorg Chim Acta 362:3208–3218

    Article  CAS  Google Scholar 

  9. Mazet C, Gade LH (2003) [Bis (oxazolinyl) pyrrole] palladium complexes as catalysts in Heck- and Suzuki-type C−C coupling reactions. Eur J Inorg Chem 2003:1161–1168

    Article  Google Scholar 

  10. Türkmen H, Pape T, Hahn FE, Çetinkaya B (2009) Palladium(II) complexes with benzimidazolin-2-ylidene and phosphane ligands and their catalytic activity in Mizoroki–Heck coupling reactions. Eur J Inorg Chem 2009:285–294

    Article  Google Scholar 

  11. Cao C, Sun R, Chen Q, Lv L, Shi Y, Pang G (2013) Palladium complexes with picolyl functionalized N-heterocyclic carbene ligands and their application in the Mizoroki–Heck reaction. Trans Met Chem 38:351–358

    Article  CAS  Google Scholar 

  12. Oestreich M (2009) The Mizoroki–Heck reaction. Wiley, Hoboken

    Book  Google Scholar 

  13. Li ZH, Chen J, Su WP, Hong MC (2010) A titania-supported highly dispersed palladium nano-catalyst generated via in situ reduction for efficient Heck coupling reaction. J Mol Catal A 328:93–98

    Article  CAS  Google Scholar 

  14. Hussain SMS, Ibrahim MB, Fazal A, Suleiman R, Fettouhi M, Ali BE (2014) Palladium-bis (oxazoline) complexes with inherent chirality: synthesis, crystal structures and applications in Suzuki, Heck and Sonogashira coupling reactions. Polyhedron 70:39–46

    Article  Google Scholar 

  15. Amini M, Bagherzadeh M, Moradi-Shoeili Z, Boghaei DM (2012) Pd (OAc) 2 without added ligand as an active catalyst for Mizoroki–Heck reaction in aqueous media. RSC Adv 2:12091–12095

    Article  CAS  Google Scholar 

  16. Wang Y, Yang Q, Yang L, Shi J, Zhang M (2013) A novel N–O ligand for palladium-catalyzed Mizoroki–Heck reaction in neat water. Tetrahedron Lett 54:5314–5317

    Article  CAS  Google Scholar 

  17. Trivedi M, Singh G, Nagarajan R, Rath NP (2013) Imidazole containing palladium(II) complexes as efficient pre-catalyst systems for Heck and Suzuki coupling reaction: synthesis, structural characterization and catalytic properties. Inorg Chim Acta 394:107–116

    Article  CAS  Google Scholar 

  18. Amini M, Bagherzadeh M, Rostamnia S (2013) Efficient imidazolium salts for palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions. Chin Chem Lett 24:433–436

    Article  CAS  Google Scholar 

  19. Wang F, Tang S, Yu Y, Wang L, Yin B, Li X (2014) Preparation of palladium nanoparticle catalyst in ionic liquid and its catalytic properties for Heck–Mizoroki reaction. Chin J Catal 35:1921–1926

    Article  CAS  Google Scholar 

  20. Bagherzadeh M, Amini M, Ellern A, Woo LK (2012) Palladium and copper complexes with oxygen–nitrogen mixed donors as efficient catalysts for the Heck reaction. Inorg Chim Acta 383:46–51

    Article  CAS  Google Scholar 

  21. Nie G, Zhang L, Cui Y (2013) Preparation of Pd nanoparticles deposited on a polyaniline/multiwall carbon nanotubes nanocomposite and their application in the Heck reaction. Reac Kinet Mech Cat 108:193–204

    Article  CAS  Google Scholar 

  22. Zhang H, Huang F, Yang C, Liu X, Shan Ren (2015) Highly dispersed Pd nanoparticles supported on 3-aminopropyltriethoxysilanes modified multiwalled carbon nanotubes for the Heck–Mizoroki reaction. Reac Kinet Mech Cat 114:489–499

    Article  CAS  Google Scholar 

  23. Kleist W, Pröckl SS, Köhler K (2008) Heck reactions of aryl chlorides catalyzed by ligand free palladium salts. Catal Lett 125:197–200

    Article  CAS  Google Scholar 

  24. Lu C-L, Prasad KS, Wu H-L, Ho J-A, Huang MH (2010) Au nanocube-directed fabrication of Au−Pd core–shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J Am Chem Soc 132:14546–14553

    Article  CAS  Google Scholar 

  25. Søbjerg LS, Gauthier D, LindhardtAT Bunge M, Finster K, Meyer RL, Skrydstrup T (2009) Bio-supported palladium nanoparticles as a catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions. Gr Chem 11:2041–2046

    Article  Google Scholar 

  26. Martínez S, Moreno-Mañas M, Vallribera A, Schubert U, Roig A, Molins E (2006) Highly dispersed nickel and palladium nanoparticle silica aerogels: sol–gel processing of tethered metal complexes and application as catalysts in the Mizoroki–Heck reaction. New J Chem 30:1093–1097

    Article  Google Scholar 

  27. Martínez AV, Mayoral JA, García JI (2014) Pd nanoparticles immobilized in [bmim] [PF6] supported on laponite clay as highly recyclable catalysts for the Mizoroki–Heck reaction. Appl Catal A 472:21–28

    Article  Google Scholar 

  28. Kayaki Y, Noguchi Y, Ikariya T (2000) Enhanced product selectivity in the Mizoroki–Heck reaction using a supercritical carbon dioxide–liquid biphasic system. Chem Commun 2000:2245–2246

    Article  Google Scholar 

  29. Bagherzadeh M, Ashouri F, Hashemi L, Morsali A (2014) Supported Pd nanoparticles on Mn-based metal-organic coordination polymer: efficient and recyclable heterogeneous catalyst for Mizoroki–Heck cross coupling reaction of terminal alkenes. Inorg Chem Commun 44:10–14

    Article  CAS  Google Scholar 

  30. Diebold C, Schweizer S, Becht JM, Le Drian C (2014) Reusable polystyrene-supported Pd catalyst for Mizoroki–Heck reactions with extremely low amounts of supported Pd. Org Biomol Chem 8:4834–4836

    Article  Google Scholar 

  31. HagiwaraH Sugawara Y, Hoshi T, Suzuki T (2005) Sustainable Mizoroki–Heck reaction in water: remarkably high activity of Pd (OAc) 2 immobilized on reversed phase silica gel with the aid of an ionic liquid. Chem Commun 2005:2942–2944

    Article  Google Scholar 

  32. Hagiwara H, Sugawara Y, Isobe K, Hoshi T, Suzuki T (2004) Immobilization of Pd (OAc) 2 in ionic liquid on silica: application to sustainable Mizoroki–Heck reaction. Org Lett 6:2325–2328

    Article  CAS  Google Scholar 

  33. Moitra N, Matsushima A, Kamei T, Kanamori K, Ikuhara YH, Gao X, Takeda K, Zhu Y, Nakanishi K, Shimada T (2014) A new hierarchically porous Pd@ HSQ monolithic catalyst for Mizoroki–Heck cross-coupling reactions. New J Chem 38:1144–1149

    Article  CAS  Google Scholar 

  34. Mino T, Shirae Y, Sasai Y, Sakamoto M, Fujita T (2006) Phosphine-free palladium catalyzed Mizoroki−Heck reaction using hydrazone as a ligand. J Org Chem 71:6834–6839

    Article  CAS  Google Scholar 

  35. Song HM, Moosa BA, Khashab NM (2012) Water-dispersable hybrid Au–Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki–Miyaura and Heck reactions. J Mater Chem 22:15953–15959

    Article  CAS  Google Scholar 

  36. Luo Q-L, Tan J-P, Li Z-F, Qin Y, Ma L, Xiao D-R (2011) Novel bis (azole) pincer palladium complexes: synthesis, structures and applications in Mizoroki–Heck reactions. Dalton Trans 40:3601–3609

    Article  CAS  Google Scholar 

  37. Yang H, Shi D, Ji S-F, Zhang D-N, Liu X-F (2014) Nanosized Pd assembled on superparamagnetic core–shell microspheres: synthesis, characterization and recyclable catalytic properties for the Heck reaction. Chin Chem Lett 25:1265–1270

    Article  CAS  Google Scholar 

  38. Amini M, Naslhajian H, Farnia SMF (2014) V-doped titanium mixed oxides as efficient catalysts for oxidation of alcohols and olefins. New J Chem 38:1581–1586

    Article  CAS  Google Scholar 

  39. Wagner M, Köhler K, Djakovitch L, Weinkauf S, Hagen V, Muhler M (2000) Heck reactions catalyzed by oxide-supported palladium-structure–activity relationships. Top Catal 13:319–326

    Article  CAS  Google Scholar 

  40. Sanjaykumar SR, Mukri BD, Patil S, Madras G, Hegde MS (2011) Ce0·98 Pd0·02 O2-δ: recyclable, ligand free palladium(II) catalyst for Heck reaction. J Chem Sci 123:47–54

    Article  CAS  Google Scholar 

  41. Amini M, Pourbadiei B, Ruberu TPA, Woo LK (2014) Catalytic activity of MnOx/WO3 nanoparticles: synthesis, structure characterization and oxidative degradation of methylene blue. New J Chem 38:1250–1255

    Article  CAS  Google Scholar 

  42. Rossy C, Majimel J, Delapierre MT, Fouquet E, Felpin F-X (2014) On the peculiar recycling properties of charcoal-supported palladium oxide nanoparticles in Sonogashira reactions. Appl Catal A 482:157–162

    Article  CAS  Google Scholar 

  43. Xuan S, Jiang W, Gong X (2011) Immobilization of Pd nanocatalysts on magnetic rattles and their catalytic property. Dalton Trans 40:7827–7830

    Article  CAS  Google Scholar 

  44. Wang Y, Biradar AV, Duncan CT, Asefa T (2010) Silica nanosphere-supported shaped Pd nanoparticles encapsulated with nanoporous silica shell: efficient and recyclable nanocatalysts. J Mater Chem 20:7834–7841

    Article  CAS  Google Scholar 

  45. Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y (2012) Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions. Tetrahedron 68:3577–3584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial funding support was provided by the Research Council of University of Maragheh (M.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Amini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, M., Yousefi, A. Preparation, characterization and catalytic reactivity of WO3@PdO core@shell nanospheres in the Mizoroki–Heck reaction. Reac Kinet Mech Cat 119, 207–217 (2016). https://doi.org/10.1007/s11144-016-1026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1026-5

Keywords

Navigation