Skip to main content
Log in

Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, a boric acid coated carboxymethyl cellulose composite catalytic membrane was prepared and employed in a pervaporation assisted membrane reactor system to synthesize ethyl lactate. The effect of catalyst loading, temperature, initial molar feed ratio and reaction run time were investigated to evaluate reaction and separation ability of the hybrid pervaporation catalytic membrane reactor (PVCMR) system. The reaction performance was obtained by using lactic acid conversion data. Separation performance was determined as functions of flux and selectivity. It was observed that the conversion increased from 51 to 71 % as the temperature increased from 55 to 75 °C. The best result was obtained as 83 % at 75 °C when initial alcohol:acid molar ratio was three. Also, it was seen that the catalytic membrane preserved 93.6 % of its activity. The system efficiency was evaluated by comparison of PVCMR data to simply batch reactor data under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BA:

Boric acid

CMC:

Carboxymethyl cellulose

CMR:

Catalytic membrane reactor

MR:

Membrane reactor

PTFE:

Poly(tetrafluoroethylene)

PVA:

Polyvinyl alcohol

PVCMR:

Pervaporation catalytic membrane reactor

PVMR:

Pervaporation membrane reactor

F:

Free lactic acid concentration

NKOH :

Normality of consumed KOH

VKOH :

Volume of consumed KOH solution

MW :

Molecular weight

J:

Flux

α:

Selectivity

M:

Alcohol:acid initial feed molar ratio

References

  1. Drioli E, Brunetti A, Di Profio G, Barbieri G (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561–1572

    Article  CAS  Google Scholar 

  2. Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96:22–34

    CAS  Google Scholar 

  3. Koros Y, Ma H, Shimidzu T (1996) Terminology for membranes and membrane processes. Pure Appl Chem 68:1479–1489

    Article  CAS  Google Scholar 

  4. A Julbe, A Ayral (2007) Catalytic membrane reactors involving inorganic membranes: a short review. From concepts to action. Water Qual Control Health, pp 30–43

  5. Vankelecom IFJ (2002) Polymeric membranes in catalytic reactors. Chem Rev 102:3779–3810

    Article  CAS  Google Scholar 

  6. Drioli E, Fontananova E (2004) Membrane technology and sustainable growth. Chem Eng Res Des 82:1557–1562

    Article  CAS  Google Scholar 

  7. Hai FI (2011) In: Gallucci F, Basile A (eds) Introduction: a review of membrane reactors in membranes for membrane reactors: preparation, optimization and selection. Wiley Inter Science, Hoboken, pp 1–62

    Google Scholar 

  8. Marcano JGS, Tsotsis TT (2004) Catalytic membranes and membrane reactors. Wiley-VCH, New York

    Google Scholar 

  9. Baker RW (2004) Membrane technology and applications. Wiley, Newark

    Book  Google Scholar 

  10. Caro J (2010) Basic aspects of membrane reactors. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering. Elsevier, Oxford, pp 1–24

    Chapter  Google Scholar 

  11. Possebom G, Nyari NLD, Zeni J, Steffens J, Rigo E, Di Luccio M (2014) Esterification of fatty acids by Penicillium crustosum lipase in a membrane reactor. J Sci Food Agric 94:2905–2911

    Article  CAS  Google Scholar 

  12. Melin T, Jefferson B, Bixio D, Thoeye C, De Wilde W, De Koning J, van der Graaf J, Wintgens T (2006) Membrane bioreactor technology for wastewater treatment and reuse. Desalination 187:271–282

    Article  CAS  Google Scholar 

  13. Wintgens T, Melin T, Schiller A, Khan S, Muston M, Bixio D, Thoeye C (2005) The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 178:1–11

    Article  CAS  Google Scholar 

  14. Cheng YS, Pen MA, Yeung KL (2009) Hydrogen production from partial oxidation of methane in a membrane reactor. J Taiwan Inst Chem Eng 40:281–288

    Article  CAS  Google Scholar 

  15. Brandao L, Madeira LM, Mendes AM (2007) Propyne hydrogenation in a continuous polymeric catalytic membrane reactor. Chem Eng Sci 62:6768–6776

    Article  CAS  Google Scholar 

  16. Bengtson G, Panek D, Fritsch D (2007) Hydrogenation of acetophenone in a pervaporative catalytic membrane reactor with online mass spectrometric monitoring. J Membr Sci 293:29–35

    Article  CAS  Google Scholar 

  17. Lim SY, Park B, Hung F, Sahimi M, Tsotsis TT (2002) Design issues of pervaporation membrane reactors for esterification. Chem Eng Sci 57:4933–4946

    Article  CAS  Google Scholar 

  18. NP Tanna, S Mayadevi (2007) Analysis of a membrane reactor: influence of membrane characteristics and operating conditions. Int J Chem React Eng 5. doi:10.2202/1542-6580.1354

  19. Ozdemir SS, Buonomenna MG, Drioli E (2006) Catalytic polymeric membranes: preparation and application. Appl Catal A Gen 307:167–183

    Article  CAS  Google Scholar 

  20. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107:1–21

    Article  CAS  Google Scholar 

  21. Schaetzel P, Vauclair C, Nguyen QT, Bouzerar R (2004) A simplified solution–diffusion theory in pervaporation: the total solvent volume fraction model. J Membr Sci 244:117–127

    Article  CAS  Google Scholar 

  22. Schaetzel P, Bouallouche R, Amar HA, Nguyen QT, Riffault BT, Marais S (2010) Mass transfer in pervaporation: the key component approximation for the solution-diffusion model. Desalination 251:161–166

    Article  CAS  Google Scholar 

  23. Baker RW, Wijmans JG, Huang Y (2010) Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J Membr Sci 348:346–352

    Article  CAS  Google Scholar 

  24. Zhu Y, Mınet RG, Tsotsıs TT (1996) A continuous pervaporation membrane reactor for the study of esterification reactions using a composite polymeric/ceramic membrane. Chem Eng Sci 51:4103–4113

    Article  CAS  Google Scholar 

  25. Korkmaz S, Salt Y, Hasanoglu A, Ozkan S, Salt I, Dincer S (2009) Pervaporation membrane reactor study for the esterification of acetic acid and isobutanol using polydimethylsiloxane membrane. Appl Catal A Gen 366:102–107

    Article  CAS  Google Scholar 

  26. Figueiredo KCS, Salim VMM, Borges CP (2008) Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors. Catal Today 133–135:809–814

    Article  Google Scholar 

  27. Khajavi S, Jansen JC, Kapteijn F (2010) Application of a sodalite membrane reactor in esterification: coupling reaction and separation. Catal Today 156:132–139

    Article  CAS  Google Scholar 

  28. Pereira CSM, Silva VMTM, Pinho SP, Rodrigues AE (2010) Batch and continuous studies for ethyl lactate synthesis in a pervaporation membrane reactor. J Membr Sci 361:43–55

    Article  CAS  Google Scholar 

  29. David MO, Nguyen QT, Neel J (1992) Pervaporation membranes endowed with catalytic properties, based on polymer blends. J Membr Sci 73:129–141

    Article  CAS  Google Scholar 

  30. Ceia F, Silva AG, Ribeiro CS, Pinto JV, Casimiro MH, Ramos AM, Vital J (2014) PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor. Catal Today 236:98–107

    Article  CAS  Google Scholar 

  31. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30

    Google Scholar 

  32. Asthana N, Kolah A, Vu DT, Lira CT, Miller DJ (2005) A continuous reactive separation process for ethyl lactate formation. Org Process Res Dev 9:599

    Article  CAS  Google Scholar 

  33. Carla SMP, Viviana MTS, Alirio ER (2011) Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem 13:2658–2671

    Article  Google Scholar 

  34. Delgado P, Sanz MT, Beltran S, Nunez LA (2010) Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chem Eng J 165:693–700

    Article  CAS  Google Scholar 

  35. Ma J, Zhang M, Lu L, Yin X, Chen J, Jiang Z (2009) Intensifying esterification reaction between lactic acid and ethanol by pervaporation dehydration using chitosan: TEOS hybrid membranes. Chem Eng J 155:800–809

    Article  CAS  Google Scholar 

  36. Benedict DJ, Parulekar SJ, Tsai SP (2006) Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery. J Membr Sci 281:435–445

    Article  CAS  Google Scholar 

  37. Kondaiah GCM, Reddy LA, Babu KS, Gurav VM, Huge KG, Bandichhor R, Reddy PP, Bhattacharya A, Anand RV (2008) Boric acid: an efficient and environmentally benign catalyst for transesterification of ethyl acetoacetate. Tetrahedron Lett 49:106–109

    Article  CAS  Google Scholar 

  38. Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J Membr Sci 333:68–78

    Article  CAS  Google Scholar 

  39. Das P, Ray SK (2013) Analysis of sorption and permeation of acetic acid–water mixtures through unfilled and filled blend membranes. Sep Purif Technol 116:433–447

    Article  CAS  Google Scholar 

  40. O Oguzer (2004) Screening and characterization of catalytic composite membranes for ethylacetate production. Ph.D. thesis, Middle East Technical University, Turkey

  41. Nunes SP, Peinemann KV (2006) Membrane technology in the chemical industry. Wiley, Germany

    Book  Google Scholar 

  42. Hasanoğlu A, Dinçer S (2011) Modelling of a pervaporation membrane reactor during esterifi cation reaction coupled with separation to produce ethyl acetate. Desalin Water Treat 35:286–294

    Article  Google Scholar 

  43. Wasewar K, Patidar S, Agarwal VK (2009) Esterification of lactic acid with ethanol in a pervaporation reactor: modeling and performance study. Desalination 243:305–313

    Article  CAS  Google Scholar 

  44. Liu QL, Chen HF (2002) Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation. J Membr Sci 196:171–178

    Article  CAS  Google Scholar 

  45. Butt JB (2000) Reaction kinetics and reactor design second edition, revised and expanded. Marcel Dekker, Basel, p 23

    Google Scholar 

  46. Bamoharram FF, Heravi MM, Ardalan P, Ardalan T (2010) A kinetic study of the esterification of lactic acid by ethanol in the presence of Preyssler acid an eco-friendly solid acid catalyst. Reac Kinet Mech Cat 100:71–78

    CAS  Google Scholar 

  47. Delgado P, Sanz MT, Beltran S (2007) Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chem Eng J 126:111–118

    Article  CAS  Google Scholar 

  48. Semenova S, Ohya H, Soontarapa K (1997) Hydrophilic membranes for pervaporation: an analytical review. Desalination 110:251–286

    Article  CAS  Google Scholar 

  49. Zhang W, Qing W, Chen N, Ren Z, Chen J, Sun W (2014) Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes. J Membr Sci 451:285–292

    Article  CAS  Google Scholar 

  50. Shelke KF, Sapkal SB, Kakade GK, Shinde PV, Shingate BB, Shingare MS (2009) Boric acid as an efficient catalyst for the synthesis of 1,1-diacetate under solvent-free condition. Chin Chem Lett 20:1453–1456

    Article  CAS  Google Scholar 

  51. Hasanoğlu A, Salt Y, Keleşer S, Dincer S (2009) The esterification of acetic acid with ethanol in a pervaporation membrane reactor. Desalination 245:662–669

    Article  Google Scholar 

  52. Zhu Y, Chen H (1998) Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate. J Membr Sci 138:123–134

    Article  CAS  Google Scholar 

  53. George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017

    Article  CAS  Google Scholar 

  54. GW Fen (2005) Pervaporation study of butanol/water mixtures by PVA and polyimide membranes, Ph.D. thesis, National University of Singapore, pp 1–75

Download references

Acknowledgments

This study was financially supported by Scientific Research Projects Unit (Grant Number: 075/2013) of Kocaeli University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilufer Durmaz Hilmioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigiz, F.U., Hilmioglu, N.D. Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane. Reac Kinet Mech Cat 118, 557–575 (2016). https://doi.org/10.1007/s11144-016-0988-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0988-7

Keywords

Navigation