Skip to main content
Log in

Zn(II) coordination polymer as a bifunctional catalyst for biodiesel production from soybean oil

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, a Zn coordination polymer with formula [Zn(4,4′-bipy)(OAc)2]n, designated as compound 1 was prepared with Zn acetate and 4,4′-bipyridine in ethanol. It was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, NH3 and CO2-TPD techniques. Compound 1 was found to be an efficient catalyst for biodiesel production. The effect of reaction parameters on the yield of fatty acid methyl esters (FAMEs or biodiesel) including the reaction temperature, time, molar ratios of methanol to oil and catalyst amount were investigated. Obtaining the highest biodiesel yield up to 98 % within 2 h in the presence of 2 % of compound 1 as catalyst (based on the soybean oil weight) together with its stability and reusability is promising. Due to insolubility of compound 1 in methanol and methyl esters, it can be easily separated and reused as catalyst. Therefore, the stability and reusability of 1 makes it a good alternative for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Atabania AE, Silitonga AS, Badruddina IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) Renew Sust Energ Rev 16:2070–2093

    Article  Google Scholar 

  2. Li E, Xu ZP, Rudolph V (2009) Appl Catal B 88:42–49

    Article  CAS  Google Scholar 

  3. MacLeod CS, Harvey AP, Lee AF, Wilson K (2008) Chem Eng J 135:63–70

    Article  CAS  Google Scholar 

  4. Srio MD, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207–217

    Article  Google Scholar 

  5. Zabeti M, Daud WMAW, Aroua MK (2009) Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

  6. Saraf S, Thomas B (2007) TransI ChemE. Part Process Saf Environ Protect 85(B5):360–364

    Article  CAS  Google Scholar 

  7. Marchetti JM, Miguel VU, Errazu AF (2007) Renew Sustain Energy Rev 11:1300–1311

    Article  CAS  Google Scholar 

  8. Leung DYC, Wu X, Leung MKH (2010) Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  9. Shahbazi MR, Khoshandam B, Ghazvini Nasiri MM (2012) J Taiwan Inst Chem Eng 43:504–510

    Article  CAS  Google Scholar 

  10. Peterson G, Scarrah W (2007) J Am Oil Chem Soc 61:1593–1597

    Article  Google Scholar 

  11. Xie W, Peng H, Chen L (2006) Appl Catal A 300:67–74

    Article  CAS  Google Scholar 

  12. Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN (2013) Ind Eng Chem 19:14–26

    Article  CAS  Google Scholar 

  13. Sharma YC, Singh B, Korstad J (2011) Fuel 90:1309–1324

    Article  CAS  Google Scholar 

  14. Semwal S, Arora AK, Badoni RP, Tuli DK (2007) Bioresour Technol 102:2151–2161

    Article  Google Scholar 

  15. Singh Chouhan AP, Sarma AK (2013) AK. Renew Sust Energ Rev 15:4378–4399

    Article  Google Scholar 

  16. Perego C, Bosetti A (2011) Micropor Mesopor Mater 14:28–39

    Article  Google Scholar 

  17. Tantirungrotechai J, Thananupappaisal P, Yoosuk B, Viriya-empikul N, Faung-nawakij K (2011) Catal Commun 16:25–29

    Article  CAS  Google Scholar 

  18. Rashtizadeh E, Farzaneh F (2013) J Taiwan Inst ChemEngin 44:917–923

    Article  CAS  Google Scholar 

  19. Rashtizadeh E, Farzaneh F, Talebpour Z (2014) Bioresour Technol 154:32–37

    Article  CAS  Google Scholar 

  20. Helwani Z, Aziz N, Bakar MZA, Mukhtar H, Kim J, Mothman R (2013) Energy Convers Manag 73:128–134

    Article  CAS  Google Scholar 

  21. Babajide O, Musyoka N, Petrik L, Ameer F (2012) Catal Today 190:54–60

    Article  CAS  Google Scholar 

  22. Li J, Fu Y-J, Qu X-J, Wang W, Luo M, Zhao CJ, Zu YG (2012) Bioresour Technol 108:112–118

    Article  CAS  Google Scholar 

  23. Kesić Z, Lukić I, Brkić D, Rogan J, Zdujić M, Liu H, Skala D (2012) Appl Catal A 427–428:58–65

    Google Scholar 

  24. Pasupulet N, Gunda K, Liu Y, Rempel GL, Ng FTT (2013) Appl Catal A 452:189–202

    Article  Google Scholar 

  25. Tantirungrotechai J, Thepwatee S, Yoosuk B (2013) Fuel 106:279–284

    Article  CAS  Google Scholar 

  26. Hu S, Guan Y, Wang Y, Han H (2011) Appl Energy 88:2685–2690

    Article  CAS  Google Scholar 

  27. Usai EM, Sini MF, Meloni D, Solinas V, Salis A (2013) Micropor Mesopor Mater 179:54–62

    Article  CAS  Google Scholar 

  28. Lukic I, Krstic J, Jovanovic D, Skala D (2009) Bioresour Technol 100:4690–4696

    Article  CAS  Google Scholar 

  29. Feyzi M, Shahbazi E (2015) J Mol Catal A 404:13–138

    Google Scholar 

  30. Wu H, Zhang J, Wei Q, Zheng J, Zhang J (2013) Fuel Process Technol 109:13–18

    Article  CAS  Google Scholar 

  31. Rashtizadeh E, Farzaneh F, Ghandi M (2010) Fuel 89:3393–3398

    Article  CAS  Google Scholar 

  32. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ (2004) Appl Catal A 257:213–223

    Article  CAS  Google Scholar 

  33. Wang Z, Chen G, Ding K (2009) Chem Rev 109:322–359

    Article  CAS  Google Scholar 

  34. Cirujano FG, Corma A, Llabrés i Xamena FX (2015) Catal Today 257:213–220

    Article  CAS  Google Scholar 

  35. Rowsell JLC, Yaghi OM (2004) Micropor Mesopor Mater 73:3–14

    Article  CAS  Google Scholar 

  36. Furukawa H, ller UM, Yaghi OM (2015) Angew. Chem Int Ed 54:2–16

    Article  Google Scholar 

  37. Chizallet C, Lazare S, Bazer-Bachi D, Bonnier F, Lecocq V, Soyer E, Quoineaud AA, Bats N (2010) J Am Chem Soc 132:12365–12377

    Article  CAS  Google Scholar 

  38. Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Zhou H, Liu Y, Sun D, Cao Z, Du Y, Gabelic Z (2012) Energy Environ Sci 5:7508–7520

    Article  CAS  Google Scholar 

  39. Cirujano FG, Corma A, LlabrésiXamena FX (2015) Chem Eng Sci 124:52–60

    Article  CAS  Google Scholar 

  40. de la Iglesia Oscar, Sorribas S, Almendro E, Zornoza B, Tellez C, Coronas J (2016) Renew Energy 88:12–19

    Article  Google Scholar 

  41. Ghoreishi Amiri M, Morsali A (2006) Z Anorg Allg Chem 632:2491–2494

    Article  CAS  Google Scholar 

  42. Celic TB, Mazaj M, Guillou N, Kaucic V, Logar NZ In: Proceedings, 3rd Croatian-Slovenian symposium on zeolites 2010

  43. Jiang G, Zhang L, Zhao Z, Zhou X, Duan A, Xu C, Gao J (2008) Appl Catal A 340:176–182

    Article  CAS  Google Scholar 

  44. Topse NY, Pedersen K, Derouane EG (1981) J Catal 70:41–52

    Article  Google Scholar 

  45. De Lima AL, Mbengue A, SanGil RAS, Ronconi CM, Mota CJA (2014) Catal Today 226:210–216

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Alzahra University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Farzaneh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, F., Moghzi, F. & Rashtizadeh, E. Zn(II) coordination polymer as a bifunctional catalyst for biodiesel production from soybean oil. Reac Kinet Mech Cat 118, 509–521 (2016). https://doi.org/10.1007/s11144-016-0986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-0986-9

Keywords

Navigation