Skip to main content
Log in

Modified nanostructured titania based thin films in photocatalysis: kinetic and mechanistic approach

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Homogeneous and crack-free TiO2-based thin films with templated mesoporosity by using selected polymers F127 and PSM02 were prepared by a dip-coating technique using evaporation-induced self-assembly method. The synthesized mesoporous TiO2 films were characterized by using FE-SEM, BET and XRD techniques. Degradation or decolorization of crystal violet was used to test the photocatalytic activity of mesoporous TiO2 films. The degradation kinetic of crystal violet was investigated in details in a broad range of initial concentrations of chosen organic dye. The kinetic data were correlated with the specific surface area, structural properties and thickness of mesoporous TiO2 films, as well as number of reaction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Das DP, Baliarsingh N, Parida KM (2007) J Mol Catal A 261:254–261

    Article  CAS  Google Scholar 

  2. Galindo C, Jacques P, Dalt A (2001) Chemosphere 45:997–1005

    Article  CAS  Google Scholar 

  3. Dominguez JR, Beltran J, Rodriguez O (2005) Catal Today 101:389–395

    Article  CAS  Google Scholar 

  4. Choi H, Stathatos E, Dionysiou DD (2006) Appl Catal B 63:60–97

    Article  CAS  Google Scholar 

  5. Andronic L, Duta A (2008) Mater Chem Phys 112:1078–1082

    Article  CAS  Google Scholar 

  6. Wang T, Wang H, Xu P, Zhao X, Liu Y, Chao S (1998) Thin Solid Films 334:103–108

    Article  CAS  Google Scholar 

  7. Kurtz SR, Gordon RG (1987) Thin Solid Films 147:167–176

    Article  CAS  Google Scholar 

  8. Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Chem Lett 8:723–726

    Article  Google Scholar 

  9. Demarne V, Balkanova S, Grisel A, Rosenfeld D, Levy F (1993) Sens Actuators B 14:497–498

    Article  CAS  Google Scholar 

  10. Cantao MP, Cisneros JI, Torrese RM (1994) J Phys Chem 98:4865–4869

    Article  CAS  Google Scholar 

  11. Li Y, Hagen J, Schaffrath W, Otschik P, Haarer D (1998) Sol Energy Mater Sol Cells 56:167–174

    Article  Google Scholar 

  12. Kang MG, Park N-G, Ryu KS, Chang SH, Kim K-J (2006) Sol Energy Mater Sol Cells 90:574–581

    Article  CAS  Google Scholar 

  13. Miki T, Nishizawa K, Suzuki K, Kato K (2004) Mater Lett 58:2751–2753

    Article  CAS  Google Scholar 

  14. Conde-Gallardo A, Castillo N, Guerrero M (2005) J Appl Phys 98:4–9

    Article  Google Scholar 

  15. Natarajan C, Nogami G (1995) J Electrochim Acta 40:643–649

    Article  Google Scholar 

  16. Nie X, Leyland A, Matthews A (2000) Surf Coat Technol 133–134:331–337

    Article  Google Scholar 

  17. Blesic MD, Saponjic ZV, Nedeljkovic JM, Uskokovic DP (2002) Mater Lett 54:298–302

    Article  CAS  Google Scholar 

  18. Yu J, Zhao X, Du J, Chen W (2000) J Sol–Gel Sci Technol 17:163–171

    Article  CAS  Google Scholar 

  19. Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissiere C, Antonietti M, Sanchez C (2004) Chem Mater 16:2948–2952

    Article  CAS  Google Scholar 

  20. Yun HS, Miyazawa K, Zhou HS, Honma I, Kuwabara M (2001) Adv Mater 13:1377–1380

    Article  CAS  Google Scholar 

  21. Yusuf MM, Imai H, Hirashima H (2002) J Sol–Gel Sci Technol 25:65–74

    Article  CAS  Google Scholar 

  22. Wu JM, Antonietti M, Gross S, Bauer M, Smarsly BM (2008) Chem Phys Chem 9:748–757

    CAS  Google Scholar 

  23. Tang J, Wu YY, McFarland EW, Stucky GD (2004) Chem Commun 14:1670–1671

    Article  Google Scholar 

  24. Monneyron P, Manero M-HJ, Foussard N, Benoit-Marquie FM, Maurette T (2003) Chem Eng Sci 58:971–978

    Article  CAS  Google Scholar 

  25. Raillard C, Hequet V, Le Cloirec P, Legrand J (2006) Water Sci Technol 53(11):107–115

    Article  CAS  Google Scholar 

  26. Rebrov EV, Schouten JC (2011) Chem Eng Proc 50:1063–1068

    Article  CAS  Google Scholar 

  27. Arconada N, Castro Y, Duran A, Hequet V (2011) Appl Catal B 107:52–58

    Article  CAS  Google Scholar 

  28. Sokolov S, Ortel E, Radnik J, Kraehnert R (2009) Thin Solid Films 518:27–35

    Article  CAS  Google Scholar 

  29. Ortel E, Sokolov S, Kraehnert R (2010) Microporous Mesoporous Mater 127:17–24

    Article  CAS  Google Scholar 

  30. Chen W, Geng Y, Sun X-D, Cai Q, Li H-D, Weng D (2008) Microporous Mesoporous Mater 111:219–227

    Article  CAS  Google Scholar 

  31. Bosc F, Lacroix-Desmazes P, Ayral A (2006) J Colloid Interface Sci 304:545–548

    Article  CAS  Google Scholar 

  32. Antonietti M (2001) Curr Opin Colloid Interface Sci 6:244–248

    Article  CAS  Google Scholar 

  33. Soler-Illia G, Sanchez C (2000) New J Chem 24:493–499

    Article  CAS  Google Scholar 

  34. Samuneva B, Kozhukharov V, Trapalis Ch, Kranold R (1993) J Mater Sci 28:2353–2360

    Article  CAS  Google Scholar 

  35. Crepaldi EL, Soler-Illia G, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770–9786

    Article  CAS  Google Scholar 

  36. Zhao J, Sallard S, Smarsly BM, Gross S, Bertino M, Boissiere C, Chen H, Shi J (2010) J Mater Chem 20:2831–2839

    Article  CAS  Google Scholar 

  37. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  38. Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35–47

    Article  CAS  Google Scholar 

  39. Kusakabe K, Ezaki M, Sakoguchi A, Oda K, Ikeda N (2012) Chem Eng J 180:245–249

    Article  CAS  Google Scholar 

  40. Chen LX, Rajh T, Jäger W, Nedeljkovic J, Thurnauer MC (1999) J Synchrotron Rad 6:445–447

    Article  CAS  Google Scholar 

  41. Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) J Phys Chem B 103:3515–3519

    Article  CAS  Google Scholar 

  42. Jankovic I, Saponjic Z, Comor M, Nedeljkovic JM (2009) J Phys Chem C 113:12645–12652

    Article  CAS  Google Scholar 

  43. Savic T, Jankovic I, Saponjic Z, Comor M, Veljkovic D, Zaric S, Nedeljkovic J (2012) Nanoscale 4:1612–1619

    Article  CAS  Google Scholar 

  44. Zarubica A, Vasic M, Antonijevic MD, Randjelovic M, Momcilovic M, Krstic J, Nedeljkovic J (2014) Mater Res Bull 57:146–151

    Article  CAS  Google Scholar 

  45. Zhang L, Zhu Y, He Y, Li W, Sun H (2003) Appl Catal B 40:287–292

    Article  CAS  Google Scholar 

  46. Kim SC, Heo MC, Hahn SH, Lee CW, Joo JH, Kim JS, Yoo I-K, Kim EJ (2005) Mater Lett 59:2059–2063

    Article  CAS  Google Scholar 

  47. Vasanth Kumar K, Porkodi K, Rocha F (2008) Catal Commun 9:82–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zarubica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubica, A. Modified nanostructured titania based thin films in photocatalysis: kinetic and mechanistic approach. Reac Kinet Mech Cat 115, 159–174 (2015). https://doi.org/10.1007/s11144-014-0830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0830-z

Keywords

Navigation