Skip to main content
Log in

Catalytic removal of a mixture of volatile organic compounds present in indoor air at various work sites over Pt, MnOx and Pt/MnOx supported monoliths

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The elimination of volatile organic compounds (VOCs) was investigated placing a novel catalytic system in the chimney venting of a commercial air extractor, using Pt, Mn and Pt/Mn catalysts supported on ceramic monoliths. The VOCs oxidized were chloroform (CHCl3), methyl ethyl ketone (MEK), toluene and xylene, alone, in a binary mixture and in a mixture of all of them. The conversion of VOCs is in general similar, regardless of whether they are in a mixture or alone. Pt/Mn monoliths exhibited the highest destruction activity for the abatement of VOCs alone and in mixtures, due to a synergetic effect between platinum and manganese. The results show that these catalytic systems can be coupled satisfactorily in the venting of the air extraction equipment still working at high flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Horsley J (1993) Catalytica environmental report no. E4, Catalytica Studies Division, Mountain View

  2. Colman Lerner JE, Sanchez EY, Sambeth JE, Porta AA (2012) Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmos Environ 55:440–447

    Article  CAS  Google Scholar 

  3. Kabir E, Kim K (2010) An on-line analysis of 7 odorous volatile organic compounds in the ambient air surrounding a large industrial complex. Atmos Environ 44:3492–3502

    Article  CAS  Google Scholar 

  4. Boeglin M, Wessels D, Henshel D (2006) An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environ Res 100:242–254

    Article  CAS  Google Scholar 

  5. Gallego E, Roca FJ, Perales JF, Sánchez G, Esplugas P (2012) Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS. Waste Manag 32:2469–2481

    Article  CAS  Google Scholar 

  6. Kabir E, Kim E, Ahn J, Hong O, Sohn J (2010) Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. J Hazard Mater 174:492–499

    Article  CAS  Google Scholar 

  7. Parra M, Elustondo D, Bermejo R, Santamaría J (2008) Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain. Atmos Environ 42:6647–6654

    Article  CAS  Google Scholar 

  8. Pekey B, Yilmaz H (2011) The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchem J 97:213–219

    Article  CAS  Google Scholar 

  9. Sarkhosh M, Mahvi AH, Zare MR, Fakhri Y (2012) Indoor contaminants from hardcopy devices: characteristics of VOCs in photocopy centers. Atmos Environ 63:307–312

    Article  CAS  Google Scholar 

  10. Song Y, Shao M, Liu Y, Lu S, Kuster W, Goldan P, Xie S (2007) Source apportionment of ambient volatile organic compounds in Beijing. Environ Sci Technol 41:4348–4353

    Article  CAS  Google Scholar 

  11. Walgraeve C, Demeestere K, Dewulf J, Van Huffel K, Van Langenhove H (2011) Diffusive sampling of 25 volatile organic compounds in indoor air: uptake rate determination and application in Flemish homes for the elderly. Atmos Environ 45:5828–5836

    Article  CAS  Google Scholar 

  12. Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75:3–15

    Article  CAS  Google Scholar 

  13. Aguero FN, Barbero BP, Costa Almeida L, Montes M, Cadús LE (2011) MnOx supported on metallic monoliths for the combustion of volatile organic compounds. Chem Eng J 166:218–223

    Article  CAS  Google Scholar 

  14. Li J, Li L, Cheng W, Wu F, Lu X, Li Z (2014) Controlled synthesis of diverse manganese oxide-based catalysts for complete oxidation of toluene and carbon monoxide. Chem Eng J 244:59–67

    Article  CAS  Google Scholar 

  15. Barbero BP, Costa Almeida L, Sanz O, Morales MR, Cadus LE, Montes M (2008) Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic Compounds. Chem Eng J 139:430–435

    Article  CAS  Google Scholar 

  16. Jounga H, Kima J, Ohb J, Youb D, Parka H, Jungb K (2014) Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci 290:267–273

    Article  Google Scholar 

  17. Pozan GS (2012) Effect of support on the catalytic activity of manganese oxide catalyst for toluene combustion. J Hazard Mater 221–222:124–130

    Article  Google Scholar 

  18. Huang Q, Yan X, Li B, Chen Y, Zhu S, Shen S (2013) Study on catalytic combustion of benzene over cerium based catalyst supported on cordierite. J Rare Earths 31:124–129

    Article  CAS  Google Scholar 

  19. Tsou J, Magnoux P, Guisnet M, Orfao J, Figueiredo J (2005) Catalytic oxidation of volatile organic compounds: oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl Catal B 57:117–123

    Article  CAS  Google Scholar 

  20. Kim S, Shim W (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B 98:180–185

    Article  CAS  Google Scholar 

  21. Van den Brink R, Mulder P, Louw R (1999) Catalytic combustion of chlorobenzene on Pt/γ-Al2O3 in the presence of aliphatic hydrocarbons. Catal Today 54:101–106

    Article  Google Scholar 

  22. Burgos N, Paulis M, Antxustegi MM, Montes M (2002) Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Appl Catal B 38:251–258

    Article  CAS  Google Scholar 

  23. Colman Lerner JE, Peluso MA, Sambeth JE, Thomas HJ (2013) Volatile organic compound removal over bentonite supported Pt, Mn and Pt/Mn monolithic catalysts. Reac Kinet Mech Cat 108:443–458

    Article  CAS  Google Scholar 

  24. Gonzalez-Velasco J, Aranzabal A, Gutierrez-Ortiz J, Lopez-Fonseca R, Gutierrez-Ortiz M (1998) Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Appl Catal B 19:189–197

    Article  CAS  Google Scholar 

  25. SM-4500-Cl-G. DPD (N,N-diethyl-p-phenylenediamine) colorimetric method

  26. SM-4500-Cl-B. argentimetric titration

  27. Sanz O, Delgado JJ, Navarro P, Arzamendi G, Gandía LM, Montes M (2011) VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves. Appl Catal B 110:231–237

    Article  CAS  Google Scholar 

  28. Kim K, Kanga C, You Y, Chung M, Woo M, Jeong W, Park N, Ahn H (2006) Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal Today 111:223–228

    Article  CAS  Google Scholar 

  29. Kim K, Ahn H (2012) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous Mesoporous Mater 152:78–83

    Article  CAS  Google Scholar 

  30. O´Malley A, Hodnett B (1999) The influence of volatile organic compound structure on conditions required for total oxidation. Catal Today 54:31–38

    Article  Google Scholar 

  31. Huang H, Liu Y, Tang W, Chen Y (2008) Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion. Catal Commun 9:55–59

    Article  CAS  Google Scholar 

  32. Peluso MA, Gambaro LA, Pronsato E, Gazzoli D, Thomas HJ, Sambeth JE (2008) Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catal Today 133–135:487–492

    Article  Google Scholar 

  33. Diehl F, Barbier J, Duprezb D, Guibard I, Mabilon G (2010) Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity. Appl Catal 95:217–227

    Article  CAS  Google Scholar 

  34. Lee S, Chung K, Hong I, Kim H (2001) Selective catalytic oxidation of volatile organic solvent mixture. J Ind Eng Chem 7:193–198

    CAS  Google Scholar 

  35. Gutiérrez-Ortiz J, Rivas B, López-Fonseca R, González-Velasco J (2005) Effect of the presence of n-hexane on the catalytic combustion of chlororganics over ceria–zirconia mixed oxides. Catal Today 107:933–941

    Article  Google Scholar 

  36. Tahir S, Koh C (1999) Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere 38:2109–2116

    Article  CAS  Google Scholar 

  37. US EPA (2002) Emissions of volatile organic compounds from solvents regulations 2002. S.I. No 543

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Peluso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colman Lerner, J.E., Peluso, M.A., Porta, A. et al. Catalytic removal of a mixture of volatile organic compounds present in indoor air at various work sites over Pt, MnOx and Pt/MnOx supported monoliths. Reac Kinet Mech Cat 114, 395–407 (2015). https://doi.org/10.1007/s11144-014-0827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0827-7

Keywords

Navigation