Skip to main content
Log in

Synthesis of SAPO-34 with the presence of additives and their catalytic performance in the transformation of chloromethane to olefins

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

SAPO-34 molecular sieves were synthesized in the presence of soluble starch, sodium dodecyl sulfate and cetyltrimethylammonium bromide as the additives under hydrothermal conditions, and the differences stemmed from the additives among all obtained SAPO-34 samples were characterized by XRD, SEM, BET, NH3-TPD and TG. Compared with the conventional SAPO-34 sample, the SAPO-34 samples modified by sodium dodecyl sulfate and cetyltrimethylammonium bromide showed less crystalline order, enlarged mesopore volume and external surface area and a reduction in total acidity amounts. Meanwhile, the SAPO-34 modified by soluble starch exhibited more total acidity amounts than the conventional SAPO-34 samples. The SAPO-34 samples modified by sodium dodecyl sulfate and cetyltrimethylammonium bromide showed better catalytic stability and less carbon deposition than the conventional SAPO-34 catalyst in the conversion of chloromethane to olefins due to the reduction in total acid sites and the increasing mesopore volume. The overall results of this study demonstrate that it is an effective way to modify the SAPO-34 molecular sieve with sodium dodecyl sulfate and cetyltrimethylammonium bromide as the additives for improving the SAPO-34 catalyst stability in the transformation of chloromethane to olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  2. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420

    Article  CAS  Google Scholar 

  3. Donk SV, Janssen AH, Bitter JH, Jong KPD (2003) Generation, characterization, and impact of mesopores in zeolite catalysts. Catal Rev 45:297–319

    Article  Google Scholar 

  4. Yu J, Xu R (2010) Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials. Acc Chem Res 43:1195–1204

    Article  CAS  Google Scholar 

  5. Wang Z, Yu J, Xu R (2012) Needs and trends in rational synthesis of zeolitic materials. Chem Soc Rev 41:1729–1741

    Article  Google Scholar 

  6. Chen J, Li J, Wei Y, Yuan C, Li B, Xu S, Zhou Y, Wang J, Zhang M, Liu Z (2013) Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catal Commun 46:36–40

    Article  Google Scholar 

  7. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Feng Y (2009) Effect of SAPO-34′s composition on its physico-chemical properties and deactivation in MTO process. Appl Catal A 364:48–56

    Article  CAS  Google Scholar 

  8. Nishiyama N, Kawaguchi M, Hirota Y, Vu DV, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A 362:193–199

    Article  CAS  Google Scholar 

  9. Venna SR, Carreon MA (2008) Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. J Phys Chem Lett 112:16261–16265

    Article  CAS  Google Scholar 

  10. Carreon MA, Li S, Falconer JL, Noble RD (2008) Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J Am Chem Soc 130:5412–5413

    Article  CAS  Google Scholar 

  11. Wang D, Zhang L, Kamasamudram K, Epling WS (2013) In situ-DRIFTS study of selective catalytic reduction of NOx by NH3 over Cu-exchanged SAPO-34. ACS Catal 3:871–881

    Article  CAS  Google Scholar 

  12. Janchen J, Ackermann D, Weiler E, Stach H, Broesicke W (2005) Calorimetric investigation on zeolites, AlPO4′s and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochim Acta 434:37–41

    Article  Google Scholar 

  13. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J Am Chem Soc 106:6092–6093

    Article  CAS  Google Scholar 

  14. Prakash AM, Unnikrirhnan S (1994) Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. J Chem Soc Faraday Trans 90:2291–2296

    Article  CAS  Google Scholar 

  15. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater 53:97–108

    Article  CAS  Google Scholar 

  16. Liu G, Tian P, Liu Z (2012) Synthesis of SAPO-34 molecular sieves templated with diethylamine and their properties compared with other templates. Chin J Catal 33:174–182

    Article  CAS  Google Scholar 

  17. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Aluminium chloride: a new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A 472:72–79

    Article  Google Scholar 

  18. Liu G, Tian P, Li J, Zhang D, Zhou F, Liu Z (2008) Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous Mesoporous Mater 111:143–149

    Article  CAS  Google Scholar 

  19. Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36:317–326

    Article  CAS  Google Scholar 

  20. Kang M, Um MH, Park JY (1999) Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals I : effect of preparation factors on the gel formation. J Mol Catal A-Chem 150:195–203

    Article  CAS  Google Scholar 

  21. Kang M (1999) Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals II : catalytic performance under various reaction conditions. J Mol Catal A-Chem 150:205–212

    Article  CAS  Google Scholar 

  22. Kang M (2000) Methanol conversion on metal-incorporated SAPO-34 s MeAPSO-34s. J Mol Catal A-Chem 160:437–444

    Article  CAS  Google Scholar 

  23. Wei Y, He Y, Zhang D, Xu L, Meng S, Liu Z, Su BL (2005) Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins. Microporous Mesoporous Mater 90:188–197

    Article  Google Scholar 

  24. Wei Y, Zhang D, Xu L, Chang F, He Y, Meng S, Su BL, Liu Z (2008) Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catal Today 131:262–269

    Article  CAS  Google Scholar 

  25. Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su BL, Liu Z (2008) MgAPSO-34 molecular sieves with various Mg stoichiometries: synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Microporous Mesoporous Mater 116:684–692

    Article  CAS  Google Scholar 

  26. Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513

    Article  CAS  Google Scholar 

  27. Heyden HV, Mintova S, Bein T (2008) Nanosized SAPO-34 synthesized from colloidal solutions. Chem Mater 20:2956–2963

    Article  Google Scholar 

  28. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505

    Article  CAS  Google Scholar 

  29. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222

    Article  CAS  Google Scholar 

  30. Schmidt F, Paasch S, Brunner E, Kaskel S (2014) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221

    Article  Google Scholar 

  31. Yang H, Liu Z, Gao H, Xie Z (2010) Synthesis and catalytic performances of hierarchical SAPO-34 monolith. J Mater Chem 20:3227–3231

    Article  CAS  Google Scholar 

  32. Yang ST, Kim JY, Chae HJ, Kim M, Jeong SY, Ahn WS (2012) Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Mater Res Bull 47:3888–3892

    Article  CAS  Google Scholar 

  33. Singh AK, Yadav R, Sakthivel A (2014) Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Microporous Mesoporous Mater 181:166–174

    Article  Google Scholar 

  34. Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. J Catal 258:243–249

    Article  CAS  Google Scholar 

  35. Gu F, Wei F, Yang J, Lin N, Lin W, Wang Y, Zhu J (2006) New strategy to synthesis of hierarchical mesoporous zeolites. Chem Mater 22:2442–2450

    Article  Google Scholar 

  36. Zhang D, Wei Y, Xu L, Du A, Chang F, Su BL, Liu Z (2006) Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs. Catal Lett 109:97–101

    Article  CAS  Google Scholar 

  37. Olah GA, Gupta B, Farina M, Felberg JD, Wai MP, Husain A, Karpeles R, Lammertsma K, Melhotra AK, Trivedi NJ (1985) Selective monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over y-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J Am Chem Soc 107:7097

    Article  CAS  Google Scholar 

  38. Taylor CE, Noceti RP (1988) Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Stud Surf Sci Catal 36:483–489

    Article  CAS  Google Scholar 

  39. Wei Y, Zhang D, Liu Z, Su BL (2006) Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. J Catal 238:46–57

    Article  CAS  Google Scholar 

  40. Wei Y, Zhang D, Chang F, Xia Q, Su BL, Liu Z (2009) Ultra-short contact time conversion of chloromethane to olefins over pre-coked SAPO-34: direct insight into the primary conversion with coke deposition. Chem Commun 40:5999–6001

    Article  Google Scholar 

  41. Svelle S, Aravinthan S, Bjørgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 241:243–254

    Article  CAS  Google Scholar 

  42. Olsbye U, Saure OV, Muddada NB, Bordiga S, Lamberti C, Nilsen MH, Lillerud KP, Svelle S (2011) Methane conversion to light olefins-how does the methyl halide route differ from the methanol to olefins (MTO) route? Catal Today 171:211–220

    Article  CAS  Google Scholar 

  43. Zhang A, Sun S, Komon ZJA, Osterwalder N, Gadewar S, Stoimenov P, Auerbach DJ, Stucky GD, McFarland EW (2011) Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves. Phys Chem Chem Phys 13:2550–2555

    Article  CAS  Google Scholar 

  44. Wang P, Lv A, Hu J, Xu J, Lu G (2008) The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous Mesoporous Mater 152:178–184

    Article  Google Scholar 

  45. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  46. Dahl IM, Kolboe S (1993) On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 20:329–336

    Article  CAS  Google Scholar 

  47. Dahl IM, Kolboe S (1994) On the reaction mechanism for hydrocarbon formation from Methanol over SAPO-34: I. isotopic labeling studies of the co-reaction of ethene and methanol. J Catal 149:458–464

    Article  CAS  Google Scholar 

  48. Ilias S, Bhan A (2013) Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3:18–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the analysis and test center of the State Key Laboratory of Chemical Engineering in East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-xian Shen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Lt., Shen, Bx., Jiang, Z. et al. Synthesis of SAPO-34 with the presence of additives and their catalytic performance in the transformation of chloromethane to olefins. Reac Kinet Mech Cat 114, 697–710 (2015). https://doi.org/10.1007/s11144-014-0812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0812-1

Keywosrds

Navigation