Skip to main content
Log in

Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Fundamental advantages of the thermochemical approach compared with the activation approach were supported in this work by the results of theoretical calculations of the A and E kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 and their comparison with experimental data. The temperature of the reaction in CO2 increases from 800 K (in vacuum) up to 1,200 K at equal rates of decomposition. This effect (unexplained in the framework of the activation approach) is of tremendous importance for estimating the thermal stability and lifetime of materials. It has been shown that the pre-exponential factor A in the Arrhenius equation is related to the entropy change of decomposition reaction and, in the isobaric mode, additionally, to the pressure of the external gaseous product. The mysterious effect of “variable activation energy” observed in many non-isothermal studies of solid decompositions, in particular, for CaCO3, was explained by the change of the reaction regime from the isobaric mode at low temperature (and decomposition degree) to the equimolar mode at higher temperatures (and higher decomposition degrees). This effect manifests itself for reactions related to the evolution of O2, H2O and CO2 gaseous products, which can be present in the reactor media as impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L’vov BV (2014) Thermochemical model in kinetics of heterogeneous reactions: 100-year jubilee. J Therm Anal Calorim 116:1041–1045. doi:10.1007/s10973-013-3580-7

    Article  Google Scholar 

  2. Hertz H (1882) Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys Chem 17:177–200

    Article  Google Scholar 

  3. Van’t Hoff JH (1884) Études de dynamique chimique. Frederik Müller et Co, Amsterdam

    Google Scholar 

  4. Arrhenius S (1889) Űber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem 4:226–248

    Google Scholar 

  5. L’vov BV (2014) Activation effect in heterogeneous decomposition reactions: fact or fiction? React Kinet Mech Catal 111:415–429. doi:10.1007/s11144-014-0675-5

    Article  Google Scholar 

  6. L’vov BV, Ryabchuk GN (1981) Studies of the mechanisms of sample atomization in electrothermal atomic absorption spectrometry by analysis of absolute process rates. Oxygen-containing compounds. Zh Anal Khim 36:2085–2096 (in Russian)

    Google Scholar 

  7. L’vov BV, Fernandez GHA (1984) Regularities in thermal dissociation of oxides in graphite furnaces for atomic absorption analysis. Zh Anal Khim 39:221–231 (in Russian)

    Google Scholar 

  8. L’vov BV (1990) The mechanism of the thermal decomposition of metal nitrates in graphite furnaces for atomic absorption analysis. Zh Anal Khim 45:2144–2153 (in Russian)

    Google Scholar 

  9. L’vov BV (1991) Mechanism of the thermal decomposition of metal nitrates from graphite furnace mass spectrometry studies. Mikrochim Acta (Wien) II:299–308

    Article  Google Scholar 

  10. Vyazovkin S, Burnham AK, Criado JM, Pérez-Marqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.34

    Article  CAS  Google Scholar 

  11. L’vov BV (2006) Thermal decomposition of solid and liquid substances. Polytech Univ Publisher, St Petersburg (in Russian)

    Google Scholar 

  12. L’vov BV (2007) Thermal decomposition of solids and melts, new thermochemical approach to the mechanism, kinetics and methodology. Springer, Berlin

    Book  Google Scholar 

  13. Langmuir I (1913) The vapour pressure of metallic tungsten. Phys Rev 2:329–342

    Article  Google Scholar 

  14. L’vov BV (1997) Interpretation of atomization mechanisms in electrothermal atomic absorption spectrometry by analysis of the absolute rates of the processes. Spectrochim Acta, Part B 52:1–23

    Article  Google Scholar 

  15. L’vov BV (1997) Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochim Acta 303:161–170

    Article  Google Scholar 

  16. L’vov BV, Ugolkov VL (2005) Application of the Hertz–Langmuir equation for investigation of dehydration kinetics of solids in atmosphere of air. Russ J Appl Chem 78:384–389

    Google Scholar 

  17. L’vov BV, Ugolkov VL (2005) Kinetics and mechanism of dehydration of kaolinite, muscovite and talc analyzed thermogravimetrically by the third-law method. J Therm Anal Calorim 82:15–22

    Article  Google Scholar 

  18. L’vov BV, Ugolkov VL (2007) Use of potassium permanganate as a possible kinetic standard in thermal analysis. Russ J Appl Chem 80:1289–1294

    Article  Google Scholar 

  19. Glushko VP (ed) (1978–1982) Thermodynamic properties of individual substances. Handbook in 4 volumes. Nauka, Moscow (in Russian)

  20. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li Chao-Rui, Tong B, Tang Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetic project–data, methods and results. Thermochim Acta 355:125–143

    Article  CAS  Google Scholar 

  21. L’vov BV, Polzik LK, Ugolkov VL (2002) Decomposition kinetics of calcite: a new approach to the old problem. Thermochim Acta 390:5–19. doi:10.1016/S0040-6031(02)00080-1

    Article  Google Scholar 

  22. L’vov BV (2002) The interrelation between the temperature of solid decompositions and the E parameter of the Arrhenius equation. Thermochim Acta 389:199–211. doi:10.1016/S0040-6031(02)00013-8

    Article  Google Scholar 

  23. Benson SW (1968) Thermochemical kinetics. Wiley, New York

    Google Scholar 

  24. Vyazovkin S (2000) Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem 19:45–60

    Article  CAS  Google Scholar 

  25. L’vov BV (2010) The mechanism of solid-state decompositions in a retrospective. J Therm Anal Calorim 101:1175–1182. doi:10.1007/s10973-009-0579-1

    Article  Google Scholar 

  26. Galwey AK, Brown ME (1999) Thermal decomposition of ionic solids (Chap 3). Elsevier, Amsterdam

    Google Scholar 

  27. Sesták J (2005) Science of heat and thermophysical properties of solids. Elsevier, Amsterdam

    Google Scholar 

  28. Schwab G-M (1931) Katalyse vom Standpunkt der chemischen Kinetik. Springer, Berlin

    Book  Google Scholar 

  29. L’vov BV, Galwey AK (2012) The mechanism and kinetics of NiO reduction by hydrogen: thermochemical approach. J Therm Anal Calorim 110:601–610. doi:10.1007/s10973-011-2000-0

    Article  Google Scholar 

  30. L’vov BV, Galwey AK (2013) Catalytic oxidation of CO on platinum: thermochemical approach. J Therm Anal Calorim 111:145–154. doi:10.1007/s10973-012-2241-6

    Article  Google Scholar 

  31. L’vov BV, Galwey AK (2013) Catalytic oxidation of hydrogen on platinum: thermochemical approach. J Therm Anal Calorim 112:815–822. doi:10.1007/s10973-012-2567-0

    Article  Google Scholar 

  32. L’vov BV, Galwey AK (2013) Toward a general theory of heterogeneous reactions: thermochemical approach. J Therm Anal Calorim 113:561–568. doi:10.1007/s10973-012-2754-z

    Article  Google Scholar 

  33. L’vov BV, Galwey AK (2013) Interpretation of the kinetic compensation effect in heterogeneous reactions: thermochemical approach. Int Rev Phys Chem 32:515–557. doi:10.1080/0144235X.2013.802109

    Article  Google Scholar 

Download references

Acknowledgments

The author is indebted to Dr. Andrew Galwey (Belfast) and Dr. Valery Ugolkov (St Petersburg) for fruitful cooperation in these studies. The author thanks also his grandson Nikita L’vov (Princeton University, USA) for a stylistic improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris V. L’vov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, B.V. Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach. Reac Kinet Mech Cat 114, 31–40 (2015). https://doi.org/10.1007/s11144-014-0767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0767-2

Keywords

Navigation