Skip to main content
Log in

Performance of cobalt catalysts supported on CexZr1−xO2 (0 < x < 1) solid solutions in oxidative ethanol reforming

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Catalysts containing 10 %Co supported on CexZr1−xO2 (0 < x < 1) were used to catalyze oxidative ethanol reforming reactions. The catalysts were characterized by temperature-programmed reduction, X-ray diffraction and N2 physisorption. Catalytic tests were conducted at 773 K and molar feed ratios of H2O/Ethanol/O2 = 3/1/0.16 and 3/1/0.20. The mixed oxide provides enhanced resistance to carbon formation because the insertion of Zr4+ causes a distortion in the CeO2 lattice, leading to a higher fraction of cerium species on the surface and favoring the oxidation and gasification reactions of carbon and CO. The addition of oxygen improved the oxidative properties of the reactive systems, with a high formation of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lima LC, Veziroglu TN (2001) Long-term environmental and socio-economic impact of a hydrogen energy program in Brazil. Int J Hydrogen Energy 26:39–45

    Article  Google Scholar 

  2. Pereira EB, Homs N, Martí S, Fierro JLG, Ramírez de La Piscina P (2008) Oxidative steam-reforming of ethanol over Co/SiO2, Co–Rh/SiO2 and Co–Ru/SiO2 catalysts: catalytic behavior and deactivation/regeneration processes. J Catal 257:206–214

    Article  CAS  Google Scholar 

  3. Srisiriwat N, Therdthianwong S, Therdthianwong A (2009) Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2. Int J Hydrogen Energy 34:2224–2234

    Article  CAS  Google Scholar 

  4. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) High efficiency steam reforming of ethanol by cobalt-based catalysts. J Power Sources 134:27–32

    Article  CAS  Google Scholar 

  5. Lima SM, Silva AM, Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl Catal A 377:181–190

    Article  Google Scholar 

  6. Lin SSY, Kim DH, Engelhard MH, Ha SY (2010) Water-induced formation of cobalt oxides over supported cobalt/ceria–zirconia catalysts under ethanol-steam conditions. J Catal 273:229–235

    Article  CAS  Google Scholar 

  7. Rao RG, Mishra BG (2003) Structural, redox and catalytic chemistry of ceria based materials. Bull Catal Soc India 2:122–134

    Google Scholar 

  8. Letichevsky S, Tellez CA, Avillez RR, Silva MIP, Fraga MA, Appel LG (2005) Obtaining CeO2–ZrO2 mixed oxides by coprecipitation: role of preparation conditions. Appl Catal B 58:203–210

    Article  CAS  Google Scholar 

  9. Sprague Electric Co. (1963) US n 3330697, 26 ago

  10. Marcos PJB, Gouvêa D (2004) Efeito da segregação e solubilização do MgO na morfologia de pós de ZrO2 durante a síntese pelo método Pechini. Cerâmica 50:38–42

    Article  CAS  Google Scholar 

  11. JCPDS (1994) Joint Committee on Powder Diffraction Standards. International Center of Diffraction Data. Pensilvânia USA (CD ROM)

  12. Nelson AE, Schulz KH (2003) Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surface. Appl Surf Sci 210:206–221

    Article  CAS  Google Scholar 

  13. Hori CE, Permana H, Simon NG, Brenner KY, More AK, Rahmoeller KM, Belton D (1998) Thermal stability of oxygen storage properties in a mixed CeO2–ZrO2 system. Appl Catal B 16:105–117

    Article  CAS  Google Scholar 

  14. Brayner R, Ciuparu D, Cruz GM, Vincent FF, Verduraz FB (2000) Preparation and characterization of high surface area niobia, ceria–niobia and ceria–zircônia. Catal Today 57:261–266

    Article  CAS  Google Scholar 

  15. Rao GR, Sahu HR (2001) XRD abd UV–Vis diffuse reflectance analysis of CeO2–ZrO2 solid solutions synthesized by combustion method. Proc Indian Acad Sci Chem Sci 113:651–658

    Article  CAS  Google Scholar 

  16. Agula B, Deng QF, Jia ML, Liu Y, Zhaorigetu B, Yuan ZY (2011) Catalytic oxidation of CO and toluene over nanostructured mesoporous NiO/Ce0.8Zr0.2O2 catalysts. Reac Kinet Mech Catal 103:101–112

    Article  Google Scholar 

  17. Gutierrez-Ortiz JI, Rivas B, Lopez-Fonseca R, Conzález-Velasco JR (2004) Combustion of aliphatic C2 chlorohydrocarbons over ceria–zirconia mixed oxides catalysts. Appl Catal A 269:147–155

    Article  CAS  Google Scholar 

  18. O’Shea VAP, Homs N, Pereira EB, Nafria R, Ramírez de La Piscina P (2007) X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal Today 126:148–152

    Article  Google Scholar 

  19. Kaspar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298

    Article  CAS  Google Scholar 

  20. Fally F, Perrichon V, Vidal H, Kaspar J, Blanco G, Pintado JM, Bernal S, Colon G, Daturi M, Lavalley JC (2000) Modification of the oxygen storage capacity of CeO2–ZrO2 mixed oxides after redox cycling aging. Catal Today 59:373–386

    Article  CAS  Google Scholar 

  21. Beryariva E, Fornasiero P, Kaspar J, Graziani M (1998) CO oxidation on Pd/CeO2–ZrO2 catalysts. Catal Today 45:179–183

    Article  Google Scholar 

  22. Milt VG, Lombardo EA, Ulla MA (2002) Stability of cobalt supported on ZrO2 catalysts for methane combustion. Appl Catal B 37:63–73

    Article  CAS  Google Scholar 

  23. Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2005) Co3O4/CeO2 e Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: correlation between morphology reduction properties and catalytic activity. Catal Commun 6:329–336

    Article  CAS  Google Scholar 

  24. Bae JW, Kim AR, Baek SC, Jun KW (2011) The role of CeO2–ZrO2 distribution on the Ni/MgAl2O4 catalyst during the combined steam and CO2 reforming of methane. Reac Kinet Mech Catal 104:377–388

    Article  CAS  Google Scholar 

  25. Xu D, Li W, Duan H, Ge Q, Xu H (2005) Reaction performance and characterization of Co/Al2O3 Fisher–Tropsch catalysts promoted with Pt, Pd and Ru. Catal Lett 102:229–235

    Article  CAS  Google Scholar 

  26. Machocki A, Denis A, Grzegorczyk W, Gac W (2010) Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol. Appl Surf Sci 256:5551–5558

    Article  CAS  Google Scholar 

  27. Kaspar J, Fornasiero P, Balducci G, Di Monte R, Hickey N, Sergo V (2003) Effect of ZrO2 content on textural and structural properties of CeO2–ZrO2 solid solutions made by citrate complexation route. Inorg Chim Acta 349:217–226

    Article  CAS  Google Scholar 

  28. Rybak P, Tomaszewska B, Machocki A, Grzegorczyk W, Denis A (2011) Conversion of ethanol over supported cobalt oxide catalysts. Catal Today 176:14–20

    Article  CAS  Google Scholar 

  29. Zhao Z, Jin R, Bao T, Lin X, Wang G (2011) Mesoporous ceria–zirconia supported cobalt oxide catalysts for CO preferential oxidation reaction in excess H2. Appl Catal B 110:154–163

    Article  CAS  Google Scholar 

  30. Fierro V, Akdim O, Provendier H, Mirodatos C (2005) Ethanol oxidative steam reforming over Ni-based catalysts. J Power Sources 145:659–666

    Article  CAS  Google Scholar 

  31. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J Power Sources 124(2003):99–103

    Article  CAS  Google Scholar 

  32. Song H, Ozkan US (2009) Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J Catal 261:66–74

    Article  CAS  Google Scholar 

  33. Damyanova S, Pawelec B, Arishtirova K, Martinez-Huerta MV, Fierro JLG (2009) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal B 89:149–159

    Article  CAS  Google Scholar 

  34. Akdim O, Cai W, Fierro V, Provendier H, Van Veen A, Shen W, Mirodatos C (2008) Oxidative steam reforming of ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: effect of metal and support on reaction mechanism. Top Catal 51:22–38

    Article  CAS  Google Scholar 

  35. Fierro V, Klouz V, Akdim O, Mirodatos C (2002) Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catal Today 75:141–144

    Article  CAS  Google Scholar 

  36. Chica A, Sayas S (2009) Effective and stable bioethanol steam reforming catalyst based on Ni and cosupported on all-silica delaminated ITQ-2 zeolite. Catal Today 146:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) and Ministério da Ciência e Tecnologia (MCT) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete M. Assaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, T.A., Assaf, J.M. & Assaf, E.M. Performance of cobalt catalysts supported on CexZr1−xO2 (0 < x < 1) solid solutions in oxidative ethanol reforming. Reac Kinet Mech Cat 109, 181–197 (2013). https://doi.org/10.1007/s11144-013-0548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-013-0548-3

Keywords

Navigation