Skip to main content
Log in

Study of preparation methods and their effect on the morphology and texture of SAPO-34 for the methanol to olefin reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In our present study, the effects of different parameters on the synthesis of silicoaluminophosphate, SAPO-34, were investigated and the product selectivity and catalytic performance of this catalyst were studied for the reaction of methanol to olefins in a fixed bed reactor. In spite of examining the conventional parameters effective in the hydrothermal preparation of SAPO-34, such as templating agents or mixed templating agents with different ratios, different alumina and silica sources, aging time and hydrothermal reaction in static state, we have investigated the effect of the mixing method and the addition of crystal growth inhibitors on the morphology and particle size of the prepared zeolites. The synthesized catalysts have been characterized with several methods such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, BET and X-ray powder diffraction. Under our experimental conditions, the prepared SAPO-34 has shown better selectivity to propylene, minimum paraffinic byproducts and a higher percentage of total olefins compared to a commercial ZSM-5 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Keil FJ (1999) Microporous Mesoporous Mater 29:49–66

    Article  CAS  Google Scholar 

  2. Qi G, Xie Z, Yang W, Zhong S, Liu H, Zhang C, Chen Q (2007) Fuel Process Technol 88:437–441

    Article  CAS  Google Scholar 

  3. Chang CD, Silvestri AJ (1997) J Catal 47:249–259

    Article  Google Scholar 

  4. Lin EN, Anthony RG (1978) Oil Gas J 92

  5. Anthony RG, Shingh BB (1981) Hydrocarb Process 85:86–88

    Google Scholar 

  6. Inui T, Takegami Y (1982) Hydrocarb Process 61:117–120

    CAS  Google Scholar 

  7. Chen NY, Garwood WE (1986) Catal Rev Sci Eng 28:185–264

    Article  CAS  Google Scholar 

  8. Avidan AA (1988) Stud Surf Sci Catal 36:307–323

    Article  CAS  Google Scholar 

  9. Thomas JM, Xu Y, Catallow CRA, Couves JW (1991) Chem Mater 3:667–672

    Article  CAS  Google Scholar 

  10. Inui T (1992) Sekiyu Gakkaishi 35:33–40

    Article  CAS  Google Scholar 

  11. VanNiekerk MJ, Fletiher JCQ, O’Connor CT (1996) Appl Catal A Gen 138:135–145

    Article  CAS  Google Scholar 

  12. Egmond V (2006) US patent 7102048 B2

  13. Haggin J (1983) Chem Eng News 61:24–26

    Google Scholar 

  14. Wilson ST, Lok BM, Flanigen EM (1982) US patent 4310440

  15. Inui T, Matsuda H, Okaniwa H, Miyamoto A (1990) Appl Catal A Gen 58:155–163

    Article  CAS  Google Scholar 

  16. Liang J, Li H, Zhao S, Guo W, Wang R, Ling M (1990) Appl Catal A Gen 64:31–40

    Article  CAS  Google Scholar 

  17. Moller K, Bein T (2011) Science 333:297–298

    Article  Google Scholar 

  18. Yilmaz B, Muller U (2009) Top Catal 52:888–895

    Article  CAS  Google Scholar 

  19. Martinez C, Corma A (2011) Coord Chem Rev 255:1558–1580

    Article  CAS  Google Scholar 

  20. Parlitz B, Schreier E, Zubowa HL, Eckelt R, Lieschke E, Fricke R (1995) J Catal 155:1–11

    Article  CAS  Google Scholar 

  21. Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191–203

    Article  CAS  Google Scholar 

  22. Heyden HV, Mintova S, Bein T (2008) Chem Mater 20:2956–2963

    Article  Google Scholar 

  23. Yao J, Wang H, Ringer SP, Chan KW, Zhang L, Xu N (2005) Microporous Mesoporous Mater 85:267–272

    Article  CAS  Google Scholar 

  24. Prakash AM, Unnikrishnan S (1994) J Chem Soc Faraday Trans 90:2291–2296

    Article  CAS  Google Scholar 

  25. Liu G, Tian D, Li J, Zhang D, Zhou F, Liu Z (2008) Microporous Mesoporous Mater 111:143–149

    Article  CAS  Google Scholar 

  26. Liu G, Tian D, Zhang Y, Li J, Xu L, Meng S, Liu Z (2008) Microporous Mesoporous Mater 114:416–423

    Article  CAS  Google Scholar 

  27. Remy T, Remi JCS, Singh R, Webley PA, Baron GV, Denayer JFM (2011) J Phys Chem C 115:8117–8125

    Article  CAS  Google Scholar 

  28. Kvisle S, Fuglerud T, Kolboe S, Olsby U, Lillerud KP, Vora BV (2008) In: Handbook of heterogeneous catalysis, 2nd edn. Wiley, Weinheim, pp 2950–2965

  29. Regli L, Bordiga S, Zecchina A, Bjergen M, Lillerud KP (2005) Stud Surf Sci Catal 155:471

    Article  CAS  Google Scholar 

  30. Watanabe Y, Koiwai A, Takeuchi H, Hyodo SA, Noda S (1993) J Catal 143:430–436

    Article  CAS  Google Scholar 

  31. Zhou H, Wang Y, Wei F, Wang D, Wang Z (2008) Appl Catal A 348:135–141

    Article  CAS  Google Scholar 

  32. Lee YJ, Beak SC, Jun KW (2003) Appl Catal A Gen 329:130–136

    Article  Google Scholar 

  33. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M, Yan ZF (2009) Microporous Mesoporous Mater 126:1–7

    Article  CAS  Google Scholar 

  34. Popova M, Minchev C, Kanazirev V (1998) Appl Catal A Gen 169:227–235

    Article  CAS  Google Scholar 

  35. Venna SR, Carreon MA (2008) J Phys Chem B 112:16261–16265

    Article  CAS  Google Scholar 

  36. Yoon JW, Jhung SH, Kim YH, Park SE, Chang JS (2005) Chem Soc 26:558–562

    CAS  Google Scholar 

  37. Wu X, Antony RG (2001) Appl Catal A Gen 218:241–250

    Article  CAS  Google Scholar 

  38. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Microporous Mesoporous Mater 53:97–108

    Article  CAS  Google Scholar 

  39. Sastre G, Lewis DW, Richard C, Catlow A (1997) J Phys Chem B 101:5249–5262

    Article  CAS  Google Scholar 

  40. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EMJ (1984) Am Chem Soc 106:6092–6093

    Article  CAS  Google Scholar 

  41. Ashtekar S, Chilukuri SVV, Chakrabarty DK (1994) J Phys Chem 98:4878–4883

    Article  CAS  Google Scholar 

  42. Martens JA, Mertens M, Grobet PJ, Jacobs PA (1988) Stud Surf Sci Catal 37:97–105

    Article  CAS  Google Scholar 

  43. Martens JA, Grobet PJ, Jacobs PAJ (1990) J Catal 126:299–305

    Article  CAS  Google Scholar 

  44. Blackwell CS, Patton RLJ (1988) J Phys Chem 92:3965–3970

    Article  CAS  Google Scholar 

  45. Strohmaier KG (2004) US Patent 6835363 B1

  46. Cao G, Shah MJ, Strohmaier KG, Hall RB (2004) US Patent 6793901 B2

  47. Chen J, Thomas JM, Wright PA (1994) Catal Lett 28:241–248

    Article  CAS  Google Scholar 

  48. Chen D, Gronvold A, Moljord K, Holmen A (2007) Ind Eng Chem Res 46:4116–4123

    Article  CAS  Google Scholar 

  49. Wilson ST (2008) US Patent 0108857 A1

  50. Lin S, Li J, Sharma RP, Yu J, Xu R (2010) Top Catal 53:1304–1310

    Article  CAS  Google Scholar 

  51. Inui T (1997) Stud Surf Sci Catal 105:1441–1468

    Article  Google Scholar 

  52. Lohse U, Parlitz B, Altrichter B, Jancke K, Loffler E, Schreier E, Vogt F (1995) J Chem Soc Faraday Trans 91:1155–1161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nemati Kharat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiashrafi, T., Nemati Kharat, A. Study of preparation methods and their effect on the morphology and texture of SAPO-34 for the methanol to olefin reaction. Reac Kinet Mech Cat 108, 417–432 (2013). https://doi.org/10.1007/s11144-012-0520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0520-7

Keywords

Navigation