Skip to main content
Log in

Promoting informativeness via staggered information releases

  • Published:
Review of Accounting Studies Aims and scope Submit manuscript

Abstract

When a firm has multiple pieces of information, this study shows that the firm does better from staggering the release of information than from expeditiously releasing all information at once. This is because releasing multiple pieces of information over time allows the firm to learn from the market’s response to each piece of information. In contrast, releasing all information at once impedes the firm’s ability to learn from the aggregate market response to all information. In effect, delaying the release of some information may improve the firm’s capacity to fine-tune follow-up decisions based on the market’s reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a more comprehensive survey on the feedback effect of stock prices, see Bond et al. (2012).

  2. When information about an action or effort helps control such action or effort, the information is said to provide stewardship (Gjesdal 1981).

  3. For deriving analytically tractable results, the literature normally models the trader as submitting optimal market orders for each individual trading period (e.g., see Brunnermeier 2005, p. 435). The trading game modeled here is consistent with this formulation. Appendix 2 derives an alternate trading model in which each trade is designed to maximize the joint profits for the two periods. Numerical simulations based on this model are presented in Fig. 2 to show that the economic forces at play with this alternate formulation are qualitatively the same as those modeled here.

  4. More specifically, \(\Sigma _{x,I}\) represents the covariance of \(x\) with \(I\left( \wp \right)\), and \(\Sigma _{I,I}\) represents the variance of \(I\left( \wp \right)\).

  5. It is worth noting that the analysis remains substantively the same if the manager cares about \(P_{1}\) instead of about \(P_{2}\). In this case, as in the main analysis, disclosure timeliness increases the market’s evaluation of \(C_{1}\) but reduces its evaluation of \(C_{2}\).

  6. The market maker takes the trader’s equilibrium strategies as given. It is easily verified that the covariance between any two of \(\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,z_{1}\left( \wp \right) +u_{1},\) and \(z_{2}\left( \wp \right) +u_{2}\) is zero for \(\wp \in \left\{ d,e\right\}\). This leads to (10).

  7. In the case of \(\wp =d,\) the following equation has an additional term involving \(Var\left( \Delta _{2}\right).\) This term is independent of \(z_{1}\left( \wp \right)\) and hence eventually drops out of the maximization problem. This term is thus ignored for expositional convenience.

References

  • Arya, A., & Mittendorf, B. (2005). Using disclosure to influence herd behavior and alter competition. Journal of Accounting and Economics, 40, 231–246.

    Article  Google Scholar 

  • Banker, R. D., & Datar, S. M. (1989). Sensitivity, precision and linear aggregation of signals for performance evaluation. Journal of Accounting Research, 27, 21–39.

    Article  Google Scholar 

  • Bond, P., Edmans, A., & Goldstein, I. (2012). The real effects of financial markets. The Annual Review of Financial Economics, 4, 339–360.

    Article  Google Scholar 

  • Boot, A. W. A., & Thakor, A. V. (1997). Financial system architecture. Review of Financial Studies, 10(3), 693–733.

    Article  Google Scholar 

  • Brunnermeier, M. K. (2005). Information leakage and market efficiency. Review of Financial Studies, 18(2), 417–457.

    Article  Google Scholar 

  • Bushman, R. M. (1991). Public disclosure and the structure of private information markets. Journal of Accounting Research, 29, 261–276.

    Article  Google Scholar 

  • Bushman, R. M., & Indjejikian, R. J. (1993). Accounting income, stock price, and managerial compensation. Journal of Accounting and Economics, 16, 3–23.

    Article  Google Scholar 

  • Chen, Q., Goldstein, I., & Jiang, W. (2007). Price informativeness and investment sensitivity to stock price. Review of Financial Studies, 20, 619–650.

    Article  Google Scholar 

  • Darrough, M. N., & Stoughton, N. M. (1990). Financial disclosure policy in an entry game. Journal of Accounting and Economics, 12, 219–243.

    Article  Google Scholar 

  • Demski, J. S., & Feltham, G. A. (1994). Market response to financial reports. Journal of Accounting and Economics, 17, 3–40.

    Article  Google Scholar 

  • Diamond, D. W. (1985). Optimal release of information by firms. The Journal of Finance, 40, 1071–1094.

    Article  Google Scholar 

  • Dierker, M. J., & Subrahmanyam, A. (2013). Dynamic information disclosure. Working paper, University of California, Los Angeles.

  • Dye, R. A., & Sridhar, S. (2002). Resource allocation effects of price reactions to disclosures. Contemporary Accounting Research, 19, 385–410.

    Article  Google Scholar 

  • Feltham, G. A., & Wu, M. (2000). Public reports, information acquisition by investors, and management incentives. Review of Accounting Studies, 5(2), 155–190.

    Article  Google Scholar 

  • Feltham, G. A., & Xie, J. (1994). Performance measure congruity and diversity in multi-task principal/agent relations. The Accounting Review, 69, 429–453.

    Google Scholar 

  • Gjesdal, F. (1981). Accounting for stewardship. Journal of Accounting Research, 19, 208–231.

    Article  Google Scholar 

  • Gao, P., & Liang, P. J. (2013). Informational feedback effect, adverse selection, and the optimal disclosure policy. Journal of Accounting Research, 51, 1133–1158.

    Article  Google Scholar 

  • Gigler, F. B. (1994). Self enforcing voluntary disclosures. Journal of Accounting Research, 32, 224–240.

    Article  Google Scholar 

  • Indjejikian, R. J. (1991). The impact of costly information interpretation on firm disclosure decisions. Journal of Accounting Research, 29, 277–301.

    Article  Google Scholar 

  • Kanodia, C., & Lee, D. (1998). Investment and disclosure: The disciplinary role of periodic performance. Journal of Accounting Research, 36(1), 33–55.

    Article  Google Scholar 

  • Kim, O., & Verrecchia, R. E. (1994). Market liquidity and volume around earnings announcements. Journal of Accounting and Economics, 17, 41–67.

    Article  Google Scholar 

  • Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53, 1315–1336.

    Article  Google Scholar 

  • Lambert, R. A. (2010). Discussion of “Implications for GAAP from an analysis of positive research in accounting”. Journal of Accounting and Economics, 50, 287–295.

    Article  Google Scholar 

  • Luo, Y. (2005). Do insiders learn from outsiders? Evidence from mergers and acquisitions. The Journal of Finance, 60, 1951–1982.

    Article  Google Scholar 

  • Nagar, V. (1999). The role of the manager’s human capital in discretionary disclosure. Journal of Accounting Research, 37, 167–181.

    Article  Google Scholar 

  • Paul, J. M. (1992). On the efficiency of stock-based compensation. The Review of Financial Studies, 5, 471–502.

    Article  Google Scholar 

  • Rock, K. (1986). Why new issues are underpriced. Journal of Financial Economics, 15, 187–212.

    Article  Google Scholar 

  • Subrahmanyam, A., & Titman, S. (1999). The going-public decision and the development of financial markets. The Journal of Finance, 54, 1045–1082.

    Article  Google Scholar 

  • Wagenhofer, A. (1990). Voluntary disclosure with a strategic opponent. Journal of Accounting and Economics, 12, 341–363.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Anil Arya, Francesco Bova, Judson Caskey, Ron Dye, Roger Edelen, Thomas Fields, Paul Fischer (the editor), Henry Friedman, Bjorn Jorgenson, Robert Magee, Michael Maher, Sri Sridhar, two anonymous referees, and workshop participants at University of California-Davis and Ohio State University for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram N. V. Ramanan.

Appendices

Appendix 1

1.1 Proof of Lemma 1

In the first period, the informed trader maximizes:

$$\begin{aligned} \underset{z_{1}\left( \wp \right) }{\max}\, E\,\left[ \left\{ V-P_{1}\left( \wp \right) \right\} z_{1}\left( \wp \right) |\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right]. \end{aligned}$$

Taking as given the market maker’s pricing function \(P_{1}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) \right] +\lambda _{1}\left( \wp \right) \cdot \left[ z_{1}\left( \wp \right) +u_{1}\right]\) and solving for the optimal strategy, after noting \(E\,\left[ u_{1}\right] =0,\) yields:

$$\begin{aligned} z_{1}\left( \wp \right) =\frac{Q_{1}\left( \wp \right) }{\lambda _{1}\left( \wp \right) }. \end{aligned}$$

The market maker sets \(P_{1}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) ,y_{1}\left( \wp \right) \right].\) Expanding and solving after taking the trader’s strategy \(z_{1}\left( \wp \right)\) as given,

$$\begin{aligned} P_{1}\left( \wp \right)&= E\,\left[ V|\varphi _{1}\left( \wp \right) \right] +\lambda _{1}\left( \wp \right) \cdot y_{1}\left( \wp \right) \,{\text{where}} \\ \lambda _{1}\left( \wp \right)&= \frac{Cov\,\left( V,z_{1}\left( \wp \right) +u_{1}\right) }{Var\,\left( z_{1}\left( \wp \right) +u_{1}\right) }. \end{aligned}$$

Next, consider the second trading period. The informed trader maximizes:

$$\begin{aligned} \underset{z_{2}\left( \wp \right) }{\max }\,E\,\left[ \left\{ V-P_{2}\left( \wp \right) \right\} z_{2}\left( \wp \right) |\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right), P_{1}\left( \wp \right) ,A_{2}\left( \wp \right) \right]. \end{aligned}$$

Since the trader takes the market maker’s pricing strategy \(P_{2}\left( \wp \right)\) as given, substituting for the equilibrium pricing rule \(P_{2}\left( \wp \right)\) in the above equation, the first order condition yields:

$$\begin{aligned} E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) ,A_{2}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] -2\lambda _{2}\left( \wp \right) z_{2}\left( \wp \right) =0. \end{aligned}$$

Solving for \(z_{2}\left( \wp \right)\),

$$\begin{aligned} z_{2}\left( \wp \right) =\frac{Q_{2}\left( \wp \right) }{\lambda _{2}\left( \wp \right) }. \end{aligned}$$

The risk-neutral market maker sets \(P_{2}\left( \wp \right) =\) \(E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) ,y_{2}\left( \wp \right) \right].\) Expanding the pricing function by taking the strategy \(z_{2}\left( \wp \right)\) as given and rearranging yields:

$$\begin{aligned} P_{2}\left( \wp \right)&= E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] +\lambda _{2}\left( \wp \right) y_{2}\left( \wp \right) \\&= P_{1}\left( \wp \right) +\left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] \right\} +\lambda _{2}\left( \wp \right) y_{2}\left( \wp \right) , \\ {\text{where}}\,\,\lambda _{2}\left( \wp \right)&= \frac{Cov\,\left( V,z_{2}\left( \wp \right) +u_{2}\right) }{Var\left( z_{2}\left( \wp \right) +u_{2}\right) }. \end{aligned}$$

Expanding and simplifying both of \(\lambda _{1}\left( \wp \right) =\frac{ Cov\,\left( V,z_{1}\left( \wp \right) +u_{1}\right) }{Var\left( z_{1}\left( \wp \right) +u_{1}\right) }\) and \(\lambda _{2}\left( \wp \right) =\frac{ Cov\,\left( V,z_{2}\left( \wp \right) +u_{2}\right) }{Var\left( z_{2}\left( \wp \right) +u_{2}\right) }\) obtains: \(\lambda _{t}\left( \wp \right) =\left\{ \frac{1}{\sigma _{u}^{2}}Var\left[ Q_{t}\left( \wp \right) \right] \right\} ^{\frac{1}{2}}\) for \(t\in \left\{ 1,2\right\}.\)

1.2 Proof of Proposition 1

  1. (i)

    Taking as given disclosure policy \(\wp\), the manager’s action choice \(a_{1}\left( \wp \right)\) maximizes:

    $$\begin{aligned} \underset{a_{1}\left( \wp \right) }{Max}\,\,E\,\left[ P_{2}\left( \wp \right) \right] -\frac{a_{1}^{2}\left( \wp \right) }{2}. \end{aligned}$$

Expanding \(E\,\left[ P_{2}\left( \wp \right) \right]\) and solving for the optimal \(a_{1}\left( \wp \right) ,\) separately for both \(\wp =e\) and \(\wp =d,\) we get:

$$\begin{aligned} a_{1}\left( \wp =e\right)&= \frac{\beta }{4}\left[ \frac{\sigma _{\theta }^{2}}{\sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}}+3\right], {\text{and}}\, \\ a_{1}\left( \wp =d\right)&= \frac{\beta }{2}\left[ \frac{\sigma _{\theta }^{2}}{\sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}}+1\right]. \end{aligned}$$

A simple comparison shows that \(a_{1}\left( e\right) >a_{1}\left( d\right)\).

  1. (ii)

    Consider \(E\,\left[ C_{1}-\left\{ K_{1}+\frac{ a_{1}^{2}\left( \wp \right) }{2}\right\} \Big |\wp =e\right] -E\,\left[ C_{1}-\left\{ K_{1}+\frac{a_{1}^{2}\left( \wp \right) }{2}\right\} \Big |\wp =d\right].\)

Using the equilibrium values of \(a_{1}\left( e\right)\) and \(a_{1}\left( d\right)\) from part \(\left( i\right)\), above,

$$\begin{aligned} E\,\left[ C_{1}-\left\{ K_{1}+\frac{a_{1}^{2}\left( \wp \right) }{2}\right\} \Big |\wp =e\right] -E\,\left[ C_{1}-\left\{ K_{1}+\frac{a_{1}^{2}\left( \wp \right) }{2}\right\} \Big |\wp =d\right] =\frac{3\beta ^{2}}{32}\left[ 1- \frac{\sigma _{\theta }^{2}}{\sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2} }\right] ^{2}>0. \end{aligned}$$

1.3 Proof of Lemma 2

First, consider \(\wp =d\). We have \(\tau \left( d\right) =\frac{1}{Var\left[ x|I\left( d\right) \right] }.\) Substituting for pricing functions \(P_{1}\left( d\right)\) and \(P_{2}\left( d\right)\) into \(I\left( d\right) ,\) expanding, and performing some simple matrix column operations,

$$\begin{aligned} \tau \left( d\right) =\frac{1}{Var\left[ x\Big |\frac{E\,\left[ V|x\right] -E \left[ V\right] }{2}+\lambda _{1}\left( d\right) u_{1},\frac{\frac{1}{2}\,\left\{ E\,\left[ V|x\right] -E\,\left[ V\right] \right\} -\lambda _{1}\left( d\right) u_{1}+E\,\left[ V|r,\varepsilon \right] -E\,\left[ V|r\right] }{2} +\lambda _{2}\left( d\right) u_{2}\right] }. \end{aligned}$$

Simplifying,

$$\begin{aligned} \tau \left( d\right) =\frac{1}{\sigma _{x}^{2}\left[ 1-\gamma _{1}^{2}K_{1}\sigma _{x}^{2}\left\{ \frac{1}{2\gamma _{1}^{2}K_{1}\sigma _{x}^{2}}+\frac{1}{4\gamma _{1}^{2}K_{1}\sigma _{x}^{2}+8\left( \frac{\sigma _{\varepsilon }^{2}\sigma _{\theta }^{2}}{\sigma _{\varepsilon }^{2}+\sigma _{\theta }^{2}}\right) }\right\} \right] }. \end{aligned}$$

Next, consider \(\wp =e.\) We have \(\tau \left( e\right) =\frac{1}{Var\left[ x|I\left( e\right) \right] }.\) Substituting for pricing functions \(P_{1}\left( e\right)\) and \(P_{2}\left( e\right)\) into \(I\left( e\right) ,\) expanding, and performing some simple matrix column operations,

$$\begin{aligned} \tau \left( e\right) =\frac{1}{Var\left[ x\Big |\frac{E\,\left[ V|x,r,\varepsilon \right] -E\,\left[ V|r\right] }{2}+\lambda _{1}\left( e\right) u_{1},\frac{\frac{1}{2}\,\left\{ E\,\left[ V|x,r,\varepsilon \right] -E \left[ V|r\right] \right\} -\lambda _{1}\left( e\right) u_{1}}{2}+\lambda _{2}\left( e\right) u_{2}\right] }. \end{aligned}$$

Simplifying,

$$\begin{aligned} \tau \left( e\right) =\frac{1}{\sigma _{x}^{2}\left[ 1-\gamma _{1}^{2}K_{1}\sigma _{x}^{2}\left\{ \frac{1}{2\gamma _{1}^{2}K_{1}\sigma _{x}^{2}\,+\,2\left( \frac{\sigma _{\varepsilon }^{2}\sigma _{\theta }^{2}}{ \sigma _{\varepsilon }^{2}+\sigma _{\theta }^{2}}\right) }+\frac{1}{4\gamma _{1}^{2}K_{1}\sigma _{x}^{2}\,+\,4\left( \frac{\sigma _{\varepsilon }^{2}\sigma _{\theta }^{2}}{\sigma _{\varepsilon }^{2}+\sigma _{\theta }^{2}}\right) } \right\} \right] }. \end{aligned}$$

Comparing the above equations,

$$\begin{aligned} \tau \left( d\right) >\tau \left( e\right) \,\iff \frac{1}{2\gamma _{1}^{2}K_{1}\sigma _{x}^{2}}+\frac{1}{4\gamma _{1}^{2}K_{1}\sigma _{x}^{2}+8\left( \frac{\sigma _{\varepsilon }^{2}\sigma _{\theta }^{2}}{ \sigma _{\varepsilon }^{2}+\sigma _{\theta }^{2}}\right) }>\frac{3}{4}\frac{1 }{\gamma _{1}^{2}K_{1}\sigma _{x}^{2}+\frac{\sigma _{\varepsilon }^{2}\sigma _{\theta }^{2}}{\sigma _{\varepsilon }^{2}+\sigma _{\theta }^{2}}}. \end{aligned}$$

Some simple manipulations show that

$$\tau (d) > \tau ( e) \iff \frac{1}{\gamma_{1}^{2}K_{1}\sigma_{x}^{2}} > \frac{1}{2\gamma_{1}^{2}K_{1}\sigma_{x}^{2} + 4\left( \frac{\sigma_{\varepsilon}^{2}\sigma_{\theta }^{2}}{ \sigma_{\varepsilon }^{2}+\sigma_{\theta }^{2}}\right)},{\text{which}}\, {\text{is}}\, {\text{always}}\, {\text{true}}.$$

Thus \(\tau \left( d\right) >\tau \left( e\right) ,\) establishing the proof. □

1.4 Proof of Proposition 2

Using (6) in (5) ,

$$\begin{aligned} \Omega \left( \wp \right) =\frac{\gamma _{2}^{2}}{4}\left[ \left\{ E\,\left[ x \right] \right\} ^{2}+\,\sigma _{x}^{2}-\frac{1}{\tau \left( \wp \right) } \right] +\frac{\beta ^{2}}{2}. \end{aligned}$$

Thus,

$$\begin{aligned} \Omega \left( d\right) -\Omega \left( e\right) =\frac{\gamma _{2}^{2}}{4} \left[ \frac{1}{\tau \left( e\right) }-\frac{1}{\tau \left( d\right) }\right]. \end{aligned}$$

Using the values of \(\tau \left( e\right)\) and \(\tau \left( d\right)\) computed in the proof of Proposition 2,

$$\begin{aligned} \Omega \left( d\right) -\Omega \left( e\right) =\frac{\gamma _{2}^{2}\sigma _{x}^{2}\frac{\sigma _{\theta }^{2}\sigma _{\varepsilon }^{2}}{\left( \sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}\right) }\left[ \gamma _{1}^{2}K_{1}\sigma _{x}^{2}+\frac{4\sigma _{\theta }^{2}\sigma _{\varepsilon }^{2}}{\left( \sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}\right) }\right] }{16\left[ \gamma _{1}^{2}K_{1}\sigma _{x}^{2}+\frac{ \sigma _{\theta }^{2}\sigma _{\varepsilon }^{2}}{\left( \sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}\right) }\right] \left[ \gamma _{1}^{2}K_{1}\sigma _{x}^{2}+\frac{2\sigma _{\theta }^{2}\sigma _{\varepsilon }^{2}}{\left( \sigma _{\theta }^{2}+\sigma _{\varepsilon }^{2}\right) }\right] }>0,\quad {\text{establishing the proof}}. \end{aligned}$$

1.5 Proof of Lemma 3

The proof follows from a visual inspection of (4) and (7). □

1.6 Proof of Proposition 3

Equating (4) and (7) and solving for \(\gamma _{2}\) yields \(\gamma ^{*}\). □

Appendix 2: Alternate trading model based on a trading strategy that maximizes joint profits of the two periods

Allow the trader to consider total trading profits in determining her strategy in each trading period. Using the same notation as before, this trading equilibrium is as follows:

Lemma

The investor’s trading strategy is:

$$\begin{aligned} z_{1}\left( \wp \right)&= \alpha _{1}\left( \wp \right) \cdot \left\{ E \left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E \left[ V|\varphi _{1}\left( \wp \right) \right] \right\} ,\,{ {and} }\, \\ z_{2}\left( \wp \right)&= \alpha _{2}\left( \wp \right) \cdot \left\{ V-E \left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] \right\} , \end{aligned}$$

and the pricing functions are:

$$\begin{aligned} P_{1}\left( \wp \right)&= E\,\left[ V|\varphi _{1}\left( \wp \right) \right] +\lambda _{1}\left( \wp \right) \left[ z_{1}\left( \wp \right) +u_{1}\right] ,\,{ {and}} \\ P_{2}\left( \wp \right)&= E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] +\lambda _{2}\left( \wp \right) \left[ z_{2}\left( \wp \right) +u_{2}\right] \\&= P_{1}\left( \wp \right) +E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] +\lambda _{2}\left( \wp \right) \left[ z_{2}\left( \wp \right) +u_{2}\right] , \end{aligned}$$

where \(\alpha _{1}\left( \wp \right)\) and \(\alpha _{2}\left( \wp \right)\) are: \(\alpha _{1}\left( \wp \right) = \frac{2\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) }{ \lambda _{1}\left( \wp \right) \left[ 4\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) \right] }\) and \(\alpha _{2}\left( \wp \right) =\frac{1}{2\lambda _{2}\left( \wp \right) },\)

with \(\lambda _{1}\left( \wp \right)\) and \(\lambda _{2}\left( \wp \right)\) the solution to the following system of equations (where \(\Delta _{1}=E\,\left[ V|x\right] -E\,\left[ V\right]\) and \(\Delta _{2}=E\,\left[ V|r,\varepsilon \right] -E\,\left[ V|r \right]\)):

$$\begin{aligned} {{ for}\, }\wp =d:&\quad \quad \lambda _{1}\left( d\right) \sigma _{u}^{2}=\alpha _{1}\left( d\right) \left[ 1-\lambda _{1}\left( d\right) \cdot \alpha _{1}\left( d\right) \right] \cdot Var\left( \Delta _{1}\right) {,\, {and}} \\&\quad \quad \left[ \lambda _{1}^{2}\left( d\right) +4\lambda _{2}^{2}\left( d\right) \right] \sigma _{u}^{2}=\left[ 1-\lambda _{1}^{2}\left( d\right) \cdot \alpha _{1}^{2}\left( d\right) \right] \cdot Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right). \\ {\,{ for}\, }\wp =e:&\quad \quad \lambda _{1}\left( e\right) \sigma _{u}^{2}=\alpha _{1}\left( e\right) \left[ 1-\lambda _{1}\left( e\right) \cdot \alpha _{1}\left( e\right) \right] \cdot \left[ Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) \right] ,{ \,{and}} \\&\quad \quad \left[ \lambda _{1}^{2}\left( e\right) +4\lambda _{2}^{2}\left( e\right) \right] \sigma _{u}^{2}=\left[ 1-\lambda _{1}^{2}\left( e\right) \cdot \alpha _{1}^{2}\left( e\right) \right] \cdot \left[ Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) \right] ; \end{aligned}$$

subject to the following second order conditions:

$$\begin{aligned} \lambda _{1}\left( \wp \right) >0, \lambda _{2}\left( \wp \right) >0, { \,{and}\, }4\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) >0. \end{aligned}$$

Proof

Consider the proposed linear equilibrium with arbitrary action rules for each \(\alpha\) and \(\lambda\). This proof solves for each \(\alpha\) and \(\lambda\).

The proof is derived using backward induction. First, consider the second trading period. Given \(P_{1}\left( \wp \right) ,\) the investor’s second period trading strategy maximizes her second period trading profits. (Her second period strategy does not affect her profits from her first period position.) That is, she maximizes:

$$\begin{aligned} \underset{z_{2}\left( \wp \right) }{Max}\, \left( V-E\,\left[ P_{2}\left( \wp \right) \right] \right) \cdot z_{2}\left( \wp \right). \end{aligned}$$

Taking as given the pricing function \(P_{2}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] +\lambda _{2}\left( \wp \right) \left[ z_{2}\left( \wp \right) +u_{2}\right]\) and noting that \(E\,\left[ u_{2}\right] =0,\) the first order condition for \(z_{2}\left( \wp \right)\) yields:

$$\begin{aligned} z_{2}\left( \wp \right) =\frac{V-E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] }{2\lambda _{2}\left( \wp \right) }, {\text{establishing}} \,\alpha _{2}\left( \wp \right) = \frac{1}{2\lambda _{2}\left( \wp \right) }. \end{aligned}$$
(8)

The second order condition requires:

$$\begin{aligned} \lambda _{2}\left( \wp \right) >0. \end{aligned}$$
(9)

Consider the market maker’s pricing function. He sets price:

$$\begin{aligned} P_{2}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,z_{1}\left( \wp \right) +u_{1},z_{2}\left( \wp \right) +u_{2}\right]. \end{aligned}$$

Given the information structure of the game, the above simplifies to:Footnote 6

$$\begin{aligned} P_{2}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,z_{1}\left( \wp \right) +u_{1}\right] +\frac{ Cov\,\left( V,z_{2}\left( \wp \right) +u_{2}\right) }{Var\,\left( z_{2}\left( \wp \right) +u_{2}\right) }\left[ z_{2}\left( \wp \right) +u_{2}\right]. \end{aligned}$$
(10)

The above equation establishes the pricing rule for \(P_{2}\left( \wp \right)\) with \(\lambda _{2}\left( \wp \right) =\frac{Cov\,\left( V,z_{2}\left( \wp \right) +u_{2}\right) }{Var\left( z_{2}\left( \wp \right) +u_{2}\right) }\).

The market maker’s choice for \(\lambda _{2}\left( \wp \right)\) takes as given the trader’s equilibrium strategies \(z_{1}\left( \wp \right)\) and \(z_{2}\left( \wp \right)\). Sequentially substituting for these into \(\lambda _{2}\left( \wp \right) =\frac{Cov\,\left( V,z_{2}\left( \wp \right) +u_{2}\right) }{Var\left( z_{2}\left( \wp \right) +u_{2}\right) },\) solving separately for \(\wp =d\) and \(\wp =e,\) and then simplifying yields:

$$\begin{aligned} \left[ \lambda _{1}^{2}\left( d\right) +4\lambda _{2}^{2}\left( d\right) \right] \sigma _{u}^{2}&= \left[ 1-\lambda _{1}^{2}\left( d\right) \cdot \alpha _{1}^{2}\left( d\right) \right] \cdot Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right)\;{\text{and}}\, \nonumber \\ \left[ \lambda _{1}^{2}\left( e\right) +4\lambda _{2}^{2}\left( e\right) \right] \sigma _{u}^{2}&= \left[ 1-\lambda _{1}^{2}\left( e\right) \cdot \alpha _{1}^{2}\left( e\right) \right] \cdot \left[ Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) \right]. \end{aligned}$$
(11)

Next, consider the first trading period. Taking into consideration the effect of the first period trade on the second period, the trader solves (the operator \(E_{1}\) is the expectation taken based on her information set in the first trading period):

$$\begin{aligned} \underset{z_{1}\left( \wp \right) }{Max}\, \left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ P_{1}\left( \wp \right) \right] \right\} \cdot z_{1}\left( \wp \right) +E_{1}\left[ \left\{ V-E\,\left[ P_{2}\left( \wp \right) \right] \right\} \cdot z_{2}\left( \wp \right) \right]. \end{aligned}$$

Taking the second period’s pricing function \(P_{2}\left( \wp \right)\) and trading strategy \(z_{2}\left( \wp \right)\) as given, she maximizes:

$$\begin{aligned}&\underset{z_{1}\left( \wp \right) }{Max}\,\left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ P_{1}\left( \wp \right) \right] \right\} \cdot z_{1}\left( \wp \right) \\&+E_{1}\left[ \begin{array}{c} \left\{ V-E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] -\lambda _{2}\left( \wp \right) \cdot E\,\left[ \frac{V-E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] }{2\lambda _{2}\left( \wp \right) }+u_{2}\right] \right\} \cdot \\ \frac{V-E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] }{2\lambda _{2}\left( \wp \right) } \end{array} \right] \end{aligned}$$

Writing \(E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) ,P_{1}\left( \wp \right) \right] =P_{1}\left( \wp \right) +E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) \right] -E \left[ V|\varphi _{1}\left( \wp \right) \right] ,\) noting that \(u_{2}\) drops out of the expression because \(E\,\left[ u_{2}\right] =0\), and expanding operator \(E_{1}\), (e.g., \(E_{1}\left[ V\right] =E\,\left[ V|\varphi _{1},A_{1} \right]\) and \(E_{1}\left[ E\,\left[ V|\varphi _{1}\left( \wp \right) ,\varphi _{2}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] \right] =0\)):Footnote 7

$$\begin{aligned} \underset{z_{1}\left( \wp \right) }{Max}\,\left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ P_{1}\left( \wp \right) \right] \right\} \cdot z_{1}\left( \wp \right) +\frac{1}{ 4\lambda _{2}\left( \wp \right) }\left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ P_{1}\left( \wp \right) \right] \right\} ^{2}. \end{aligned}$$

Taking pricing function \(P_{1}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) \right] +\lambda _{1}\left( \wp \right) \left[ z_{1}\left( \wp \right) +u_{1}\right]\) as given, she maximizes:

$$\begin{aligned}&\underset{z_{1}\left( \wp \right) }{Max}\, \left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] -\lambda _{1}\left( \wp \right) \cdot z_{1}\left( \wp \right) \right\} \cdot z_{1}\left( \wp \right) \\&+\frac{1}{4\lambda _{2}\left( \wp \right) }\left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] -\lambda _{1}\left( \wp \right) E\,\left[ z_{1}\left( \wp \right) +u_{1}\right] \right\} ^{2}. \end{aligned}$$

The first order condition for \(z_{1}\) yields:

$$\begin{aligned}&E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] -2\lambda _{1}\left( \wp \right) \cdot z_{1}\left( \wp \right) \\&-\frac{\lambda _{1}\left( \wp \right) }{2\lambda _{2}\left( \wp \right) } \left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] -\lambda _{1}\left( \wp \right) E\,\left[ z_{1}\left( \wp \right) +u_{1}\right] \right\} =0 \end{aligned}$$

Noting that \(E\,\left[ u_{1}\right] =0\) and solving for \(z_{1}\left( \wp \right)\),

$$\begin{aligned} z_{1}\left( \wp \right) =\frac{2\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) }{\lambda _{1}\left( \wp \right) \left[ 4\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) \right] }\cdot \left\{ E\,\left[ V|\varphi _{1}\left( \wp \right) ,A_{1}\left( \wp \right) \right] -E\,\left[ V|\varphi _{1}\left( \wp \right) \right] \right\}. \end{aligned}$$
(12)

This establishes that

$$\begin{aligned} \alpha _{1}\left( \wp \right) =\frac{2\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) }{\lambda _{1}\left( \wp \right) \left[ 4\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) \right] }. \end{aligned}$$
(13)

The second order condition requires:

$$\begin{aligned} \lambda _{1}\left( \wp \right) >0 {\text{ and}}\,4\lambda _{2}\left( \wp \right) -\lambda _{1}\left( \wp \right) >0. \end{aligned}$$
(14)

Consider the market maker’s pricing function in the first trading period. He sets:

$$\begin{aligned} P_{1}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) ,z_{1}\left( \wp \right) +u_{1}\right]. \end{aligned}$$

This reduces to:

$$\begin{aligned} P_{1}\left( \wp \right) =E\,\left[ V|\varphi _{1}\left( \wp \right) \right] + \frac{Cov\,\left( V,z_{1}\left( \wp \right) +u_{1}\right) }{Var\,\left( z_{1}\left( \wp \right) +u_{1}\right) }\left[ z_{1}\left( \wp \right) +u_{1} \right]. \end{aligned}$$
(15)

This equation establishes the pricing rule for \(P_{1}\left( \wp \right)\) where \(\lambda _{1}\left( \wp \right) =\frac{Cov\,\left( V,z_{1}\left( \wp \right) +u_{1}\right) }{Var\left( z_{1}\left( \wp \right) +u_{1}\right) }\). The market maker’s choice for \(\lambda _{1}\left( \wp \right)\) takes the trader’s equilibrium strategies as given. Substituting these equilibrium strategies into \(\lambda _{1}\left( \wp \right) =\frac{Cov\,\left( V,z_{1}\left( \wp \right) +u_{1}\right) }{Var\left( z_{1}\left( \wp \right) +u_{1}\right) },\) solving separately for \(\wp =d\) and \(\wp =e,\) and then simplifying yields:

$$\begin{aligned} \lambda _{1}\left( d\right) \sigma _{u}^{2}&= \alpha _{1}\left( d\right) \cdot \left[ 1-\lambda _{1}\left( d\right) \cdot \alpha _{1}\left( d\right) \right] \cdot Var\left( \Delta _{1}\right) ,\;{\text{and}}\, \nonumber \\ \lambda _{1}\left( e\right) \sigma _{u}^{2}&= \alpha _{1}\left( e\right) \cdot \left[ 1-\lambda _{1}\left( e\right) \cdot \alpha _{1}\left( e\right) \right] \cdot \left[ Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) \right]. \end{aligned}$$
(16)

Equations (8) and (12) provide the trading strategies, (10) and (15) the pricing functions, (8) and (13) the expressions for the \(\alpha\)’s, (11) and (16) equations for \(\lambda\)’s\(,\) and finally, (9) and (14) the second order conditions. This completes the proof. □

Based on the above lemma, setting \(\gamma _{1}=1\) and \(K_{1}=1,\) it follows that:

$$\begin{aligned} \frac{1}{\tau \left( d\right) }&= \sigma _{x}^{2}\left[ 1-\frac{\lambda _{1}\left( d\right) \cdot \alpha _{1}\left( d\right) }{Var\left( \Delta _{1}\right) }+\frac{\left[ 1-\lambda _{1}\left( d\right) \cdot \alpha _{1}\left( d\right) \right] ^{2}}{\left[ 2-2\lambda _{1}\left( d\right) \cdot \alpha _{1}\left( d\right) \right] \cdot Var\left( \Delta _{1}\right) +2Var\left( \Delta _{2}\right) }\right] \& \\ \frac{1}{\tau \left( e\right) }&= \sigma _{x}^{2}\left[ 1-\frac{\lambda _{1}\left( e\right) \cdot \alpha _{1}\left( e\right) }{Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) }+\frac{\left[ 1-\lambda _{1}\left( e\right) \cdot \alpha _{1}\left( e\right) \right] ^{2}}{\left[ 2-2\lambda _{1}\left( e\right) \cdot \alpha _{1}\left( e\right) \right] \left[ Var\left( \Delta _{1}\right) +Var\left( \Delta _{2}\right) \right] } \right]. \nonumber \end{aligned}$$
(17)

For a given \(Var\left( \Delta _{1}\right)\) and \(Var\left( \Delta _{2}\right) ,\) the values of \(\alpha _{1}\left( \wp \right) ,\) \(\lambda _{1}\left( \wp \right)\) and \(\lambda _{2}\left( \wp \right)\) are obtained by solving (11) , (13) , and (16) simultaneously subject to the conditions in (9) and (14). Using these values in (17) , the plot of \(\tau \left( e\right) /\tau \left( d\right)\) against \(Var\left( \Delta _{2}\right) /Var\left( \Delta _{1}\right)\) is drawn in Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanan, R.N.V. Promoting informativeness via staggered information releases. Rev Account Stud 20, 537–558 (2015). https://doi.org/10.1007/s11142-014-9307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11142-014-9307-6

Keywords

JEL Classification

Navigation