Skip to main content
Log in

Measurements of the total electron content of the ionosphere by the radioastronomy Faraday method

  • Published:
Radiophysics and Quantum Electronics Aims and scope

In 2008 and 2009, when a deep solar-activity minimum was observed, the total electron content of the ionosphere was measured by the radioastronomy method using the ionospheric Faraday rotation of the polarization plane of a linear-polarized component of the diffuse radio-frequency (RF) radiation of the galaxy. In the measurements performed at a frequency of 290 MHz at the Radioastronomy observatory “Staraya Pustyn” of the Radiophysical Research Institute of Nizhny Novgorod, the previously studied region of the Celestial North Pole was used. The brightness temperature was calibrated by the Cassiopeia A radio source. The time dependence of the Cassiopeia The RF radiation stream density, which was obtained in the period of 1978–2011 from the measurement results at a frequency of 290 MHz, is shown. A new method of accounting for a spurious polarized signal allowing for its time dependence was developed and used, which makes it possible to improve the measurement frequency of the time variations of total electron content of the ionosphere. This method allowed us to more accurately measure the brightness temperature of the linearly polarized component of diffuse galaxy RF radiation in the direction of the Celestial North Pole, which amounted to 0.83 ± 0.07 K at a frequency of 290 MHz. For this region of the horizon, we demonstrate the spectra of the brightness temperature and the position angle of the polarization plane of the linearly polarized component of the galaxy diffuse RF radiation ranging from meter to centimeter wavelengths, which allows us to choose the required frequency for the measurements by the radioastronomy Faraday method in the future. The values of the total electron content of the ionosphere are compared with the corresponding values from the global ionospheric maps obtained from observations of the GPS satellite signals. The difference between the average values of total electron content of the ionosphere is 1.9∙1012 cm-2 according to all radioastronomy measurements and the corresponding means from the global ionospheric maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Razin, Sov. Astron., 2, 216 (1958).

    ADS  Google Scholar 

  2. W. K. Brouw and E. M. Berkhuijsen, Nature, 196, 757 (1962).

    Article  ADS  Google Scholar 

  3. V. A. Razin, A. I. Teplykh, V. I. Kosolapenko, et al., Geomag. Aeron., 28, No. 6, 1027 (1988).

    Google Scholar 

  4. V. A. Razin, Radiotekh. Élektron., 1, No. 6, 846 (1956).

    Google Scholar 

  5. G. Westerhout, Ch. L. Seeger, W. N. Brouw, and J. Tinbergen, Bull. Astron. Institutes Netherlands, 16, 187 (1962).

    ADS  Google Scholar 

  6. W. K. Brouw, C. A. Muller, and J. Tinbergen, Bull. Astron. Institutes Netherlands, 16, 213 (1962).

    ADS  Google Scholar 

  7. V. A. Razin, V. V. Khrulev, V. T. Fedorov, et al., Radiophys. Quantum Electron., 11, No. 10, 824 (1968).

    Article  ADS  Google Scholar 

  8. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasma, Pergamon Press, Oxford (1970).

    Google Scholar 

  9. Ya. L. Al’pert, Radio Wave Propagation and the Ionosphere, Consultants Bureau, New York (1973).

  10. K. Davis, Ionospheric Radio Waves, Blaisdell (1973).

  11. L. A. Dobrushskiy, V. I. Kosolapenko, L. V. Popova, et al., in: Ionospheric Wave Perturbations [in Russian], Nauka, Alma-Ata (1989), p. 128.

  12. A. A. Bogolyubov, L. A. Dobrushskiy, V. I. Kosolapenko, et al., in: Ionospheric Wave Perturbations [in Russian], Nauka, Alma-Ata (1989), p. 133.

  13. J. R. Baker, J. Atmos. Terr. Phys., 34, 1923 (1972).

    Article  ADS  Google Scholar 

  14. ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex.

  15. E. N. Vinyaikin, I. P. Kuznetsova, A. M. Paseka, et al., Astron. Lett., 22, 582 (1996).

    ADS  Google Scholar 

  16. E. N. Vinyaikin and V. A. Razin, AIP Conf. Proc., 609, 26 (2002).

    Article  ADS  Google Scholar 

  17. V. A. Razin, E. N. Vinyaikin, A. M. Paseka, and A. I. Teplykh [in Russian], in: Astrophysics and Cosmology after Gamov, Cambridge Sci. Publ. (2007), p. 443.

  18. E. N. Vinyaikin, Proc. 12th Sci. Conf. Radiophys., Nizhny Novgorod State University, Nizhny Novgorod (2008), p. 53.

  19. E. N. Vinyaikin, Results of Research Activity of Radiophysical Research Institute FGNU in 2008 [in Russian], Preprint No. 527, NIRFI, Nizhny Novgorod (2009), p. 38

  20. A. J. Mannucci, C. M. Ho, and U. J. Lindqwister, Radio Sci., 33, 565 (1998).

    Article  ADS  Google Scholar 

  21. E. L. Afraimovich and N. P. Perepalova, GPS Monitoring of the Upper Atmosphere of the Earth [in Russian], Institute of the Solar-Terrestrial Physics, Irkutsk (2006).

  22. J. E. Titheridge, Planet. Space Sci., 20, 353 (1972).

    Article  ADS  Google Scholar 

  23. R. A. M. Van der Linden and the SIDC team, Online Catalogue of the Sunspot Index: http://sidc.oma.be/html/sunspot.html .

  24. V. I. Abramov, I. F. Belov, S. A. Volokhov, and A. A. Mel’nikov, Radiophys. Quantum Electron., 19, No. 11, 1151 (1976).

    Article  ADS  Google Scholar 

  25. E. N. Vinyaikin, Astron. Rep., 51, 87 (2007).

    Article  ADS  Google Scholar 

  26. E. N. Vinyaikin, Proc. 15th Sci. Conf. Radiophys. [in Russian], Nizhny Novgorod State University, Nizhny Novgorod (2011), p. 60.

  27. E. N. Vinyaikin, Astron. Rep., 50, 143 (2006).

    Article  ADS  Google Scholar 

  28. I. S. Gonorovskiy, Radioengineering Circuits and Signals. Part 1. Signals, Linear Systems with Constant and Variable Parameters [in Russian], Sovetskoe Radio, Moscow (1966).

  29. E. N. Vinyaikin, Comparison of Results of the Measurements of Total Electron Content of the Ionosphere by the Radioastronomy Method and Using the GPS Satellite Signals [in Russian], Preprint No. 542, NIRFI, Nizhny Novgorod (2011).

  30. I. A. Krinberg and A. V. Tashchilin, Ionosphere and Plasmasphere [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Vinyaikin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 55, No. 7, pp. 485–499, May 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinyaikin, E.N. Measurements of the total electron content of the ionosphere by the radioastronomy Faraday method. Radiophys Quantum El 55, 440–452 (2012). https://doi.org/10.1007/s11141-012-9380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-012-9380-2

Keywords

Navigation