Skip to main content
Log in

Quadratic forms representing all integers coprime to 3

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Following Bhargava and Hanke’s celebrated 290-theorem, we prove a universality theorem for all positive-definite integer-valued quadratic forms that represent all positive integers coprime to 3. In particular, if a positive-definite quadratic form represents all positive integers coprime to 3 and \(\le \)290, then it represents all positive integers coprime to 3. We use similar methods to those used by Rouse to prove (assuming GRH) that a positive-definite quadratic form representing every odd integer between 1 and 451 represents all positive odd integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barowsky, M., Damron, W., Mejia, A., Saia, F., Schock, N., Thomspon, K.: Classically integral quadratic forms excepting at most two values, Preprint

  2. Bhargava, M.: On the Conway-Schneeberger Fifteen Theorem. Quadratic Forms and Their Applications (Dublin, 1999). Contemporary Mathematics, vol. 272, pp. 27–37. American Mathematical Society, Providence, RI (2000)

  3. Bhargava, M., Hanke, J.: Universal quadratic forms and the 290-Theorem, Preprint

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)

  5. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290. Springer-Verlag, New York (1988). With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov

  6. Dickson, L.E.: Quaternary quadratic forms representing all integers. Am. J. Math. 49(1), 39–56 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hanke, J.: Local densities and explicit bounds for representability by a quadratic form. Duke Math. J. 124(2), 351–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  9. Jagy, W.C., Kaplansky, I., Schiemann, A.: There are 913 regular ternary forms. Mathematika 44(2), 332–341 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, M.-H.: Recent Developments on Universal Forms. Algebraic and Arithmetic Theory of Quadratic Forms. Contemporary Mathematics, vol. 344, pp. 215–228. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  11. Lemke Oliver, R.J.: Representation by ternary quadratic forms. Bull. Lond. Math. Soc. 46(6), 1237–1247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Oh, B.-K.: Regular positive ternary quadratic forms. Acta Arith. 147(3), 233–243 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramanujan, S.: On the expression of a number in the form \(ax^2+by^2+cz^2+du^2\). Proc. Camb. Philos. Soc. 19, 11–21 (1917). Collected papers of Srinivasa Ramanujan, pp. 169–178. AMS Chelsea Publications, Providence (2000)

  14. Rouse, J.: Quadratic forms representing all odd positive integers. Am. J. Math. 136(6), 1693–1745 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schneeberger, W.A.: Arithmetic and geometry of integral lattices. ProQuest LLC, Ann Arbor (1997). Thesis (Ph.D.), Princeton University, Princeton

  16. Siegel, C.L.: Über die analytische Theorie der quadratischen Formen. Ann. Math. (2) 36(3), 527–606 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  17. Willerding, M.F.: Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers. Bull. Am. Math. Soc. 54, 334–337 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, T.: An explicit formula for local densities of quadratic forms. J. Number Theory 72(2), 309–356 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors used the computer software package Magma [4] version 2.21-1 extensively for the computations. Magma scripts and log files from the computations performed are available at http://users.wfu.edu/rouseja/CCXC/. This work represents the master’s thesis of the first author completed at Wake Forest University in the spring of 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Rouse.

Appendix: Table of quadratic forms with given truants

Appendix: Table of quadratic forms with given truants

Form

Truant

\(2x^{2}\)

1

\(x^{2}\)

2

\(x^{2} + 2y^{2}\)

5

\(x^{2} + y^{2}\)

7

\(x^{2} -xy + y^{2} + 2z^{2} + 2zw + 4w^{2}\)

10

\(x^{2} + y^{2} + 5z^{2}\)

11

\(x^{2} + 2y^{2} - xz + 2yz + 5z^{2} - xw - 2zw + 4w^{2}\)

13

\(x^{2} + y^{2} + 2z^{2} - yw + 3w^{2}\)

14

\(x^{2} + xy + 2y^{2} - xz - yz + 4z^{2} + zw + 5w^{2}\)

17

\(x^{2} + xy + 2y^{2} - xz - yz + 3z^{2} - xw - 2zw + 6w^{2}\)

19

\(x^{2} + y^{2} - xz + yz + 7z^{2} - 2zw + 10w^{2}\)

22

\(x^{2} + 2y^{2} + yz + 5z^{2} - xw + 7w^{2}\)

23

\(x^{2} + 2y^{2} + 3z^{2} - 2yw + 3zw + 9w^{2}\)

26

\(x^{2} + 2y^{2} - xz - yz + 4z^{2}\)

29

\(x^{2} + xy + 2y^{2} - xz + yz + 5z^{2} + 2zw + 10w^{2}\)

31

\(x^{2} + xy + 2y^{2} - xz + yz + 3z^{2} + 17w^{2}\)

34

\(x^{2} + 2y^{2} + 5z^{2} - xw - 2yw + zw + 10w^{2}\)

35

\(x^{2} + 2y^{2} - xz + yz + 5z^{2} - xw - 2zw + 12w^{2}\)

37

\(x^{2} + y^{2} - xz + 5z^{2} - xw - yw - 3zw + 11w^{2}\)

38

\(x^{2} + y^{2} - xz + yz + 5z^{2} - xw + 5zw + 11w^{2}\)

46

\(x^{2} + y^{2} + yz + 6z^{2} + 9w^{2}\)

47

\(x^{2} + y^{2} + 7z^{2} - xw + 7zw + 8w^{2}\)

55

\(x^{2} + 2y^{2} + 3z^{2} - xw - yw + 3zw + 8w^{2}\)

58

\(x^{2} + xy + 2y^{2} + 5z^{2} - wz + 5zw + 6w^{2}\)

62

\(x^{2} + y^{2} + yz + 2z^{2} - xw + 23w^{2}\)

70

\(x^{2} + y^{2} - xz + yz + 5z^{2} - xw - yw + 12w^{2}\)

94

\(x^{2} + y^{2} + yz + 3z^{2} + 22w^{2}\)

110

\(x^{2} + y^{2} + 7z^{2} + 7zw + 14w^{2} + 35v^{2}\)

119

\(x^{2} + 2y^{2} - xz - yz + 4z^{2} + 29w^{2}\)

145

\(x^{2} + 2y^{2} - xz - yz + 4z^{2} + 29w^{2} + 29zv + 58wv + 145v^{2}\)

203

\(x^{2} + 2y^{2} - xz - yz + 4z^{2} + 29w^{2} + 29zv + 87wv + 145v^{2}\)

290

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeBenedetto, J., Rouse, J. Quadratic forms representing all integers coprime to 3. Ramanujan J 46, 431–446 (2018). https://doi.org/10.1007/s11139-016-9883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9883-0

Keywords

Mathematics Subject Classification

Navigation