Skip to main content
Log in

Explicit estimates of some functions over primes

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

New results have been found about the Riemann hypothesis. In particular, we noticed an extension of zero-free region and a more accurate location of zeros in the critical strip. The Riemann hypothesis implies results about the distribution of prime numbers. We get better effective estimates of common number theoretical functions which are closely linked to \(\zeta \) zeros like \(\psi (x),\vartheta (x),\pi (x)\), or the \(k\mathrm{{th}}\) prime number \(p_k\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    MATH  Google Scholar 

  2. Axler, C.: New bounds for the prime counting function \(\pi (x)\). arXiv: 1409.1780 (2014)

  3. Berkane, D., Dusart, P.: On a constant related to the prime counting function. Mediterr. J. Math. 13(3), 929–938 (2016). doi:10.1007/s00009-015-0564-9

  4. Cesaro, E.: Sur une formule empirique de M. Pervouchine. Comptes Rendus hebdo. des Séances de l’Académie des Sciences CXIX 119, 848–849 (1894)

  5. Cipolla, M.: La determinazione assintotica dell’\(n^{imo}\) numero primo. Rend. Acad. Sci. Fis. Mat. Napoli 8, 132–166 (1902)

    MATH  Google Scholar 

  6. Costa P.N.: Estimates for the Chebyshev function \(\psi (x)-\vartheta (x)\). Math. Comput. 44(169), 211–221 (1985). See corrigendum [Math. Comput. 48(177), 447 (1987)]

  7. Deléglise, M., Rivat, J.: Computing \(\psi (x)\). Math. Comput. 67(224), 1691–1696 (1998)

    Article  MATH  Google Scholar 

  8. Dusart, P.: Inégalités explicites pour \(\psi (X)\), \(\vartheta (X)\), \(\pi (X)\) et les nombres premiers. C. R. Math. Acad. Sci. Soc. R. Can. 21(2), 53–59 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Dusart, P.: The kth prime is greater than k(ln k + ln ln k - 1) for k \(\ge \) 2. Math. Comput. 68(225), 411–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dusart, P.: Estimates of \(\psi,\vartheta \) for large values of \(x\) without the Riemann hypothesis. Math. Comput. 85(298), 875–888 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edwards, H.M.: Riemann’s Zeta Function. Academic Press, New York–London, 1974. Pure and Applied Mathematics, Vol. 58. Reprinted by Dover Publications Inc., Mineola (2001)

  12. Faber, L., Kadiri, H.: New bounds for \(\psi (x)\). Math. Comput. 84(293), 1339–1357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gourdon, X.: The \(10^{13}\) first zeros of the Riemann zeta function, and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (2004). Accessed 24 Oct 2004

  14. Gram, J.P.: Note sur les zéros de la fonction \(\zeta (s)\) de Riemann. Acta Math. 27(1), 289–304 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ingham, A.: The Distribution of Prime Numbers. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  16. Kadiri, H.: Une région explicite sans zéros pour la fonction \(\zeta \) de Riemann. Acta Arith. 117(4), 303–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kadiri, H.: A zero density result for the Riemann zeta function. Acta Arith. 160(2), 185–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kadiri, H., Lumley, A.: Short effective intervals containing primes. Integers 14, Paper No. A61 (2014)

  19. Massias, J.-P., Robin, G.: Bornes effectives pour certaines fonctions concernant les nombres premiers. J. Théor. Nombres Bordeaux 8(1), 215–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mossinghoff, M.J., Trudgian, T.S.: Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function. J. Number Theory 157, 329–349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicely, T.R.: New maximal prime gaps and first occurrences. Math. Comput. 68(227), 1311–1315 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nyman, B., Nicely, T.R.: New prime gaps between \(10^{15}\) and \(5\times 10^{16}\). J. Integer Seq. 6, 3 (2003). Article 03.3.1, 6

  23. Odlyzko, A.M.: The 10\(^{22}\)-nd zero of the Riemann zeta function. In: van Frankenhuysen, M., Lapidus, M.L. (eds.) Dynamical, Spectral, and Arithmetic Zeta Functions. American Mathematical Society, Contemporary Mathematics, vol. 290, pp. 139–144 (2001)

  24. Oliveira e Silva, T., Herzog, S., Pardi, S.: Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4\(\cdot \)10\({}^{\text{18}}\). Math. Comput. 83, 288 (2014)

  25. Panaitopol, L.: A formula for \(\pi (x)\) applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. (5) 1, 55–56 (2000)

  26. Platt, D.J., Trudgian, T.S.: On the first sign change of \(\vartheta (x)-x\). Math. Comput. 85, 1539–1547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ramaré, O.: Explicit estimates for the summatory function of \(\Lambda (n)/n\) from the one of \(\Lambda (n)\). Acta Arith. 159(2), 113–122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramaré, O.: An explicit density estimate for Dirichlet \(L\)-series. Math. Comput. 85(297), 325–356 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramaré, O., Saouter, Y.: Short effective intervals containing primes. J. Number Theory 98(1), 10–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Riesel, H.: Prime Numbers and Computer Methods for Factorization. Birkhauser Boston, Cambridge, MA (1985)

    Book  MATH  Google Scholar 

  31. Robin, G.: Estimation de la fonction de Tchebychef \(\vartheta \) sur le \(k\)-ième nombre premier et grandes valeurs de la fonction \(\omega (n)\) nombre de diviseurs premiers de \(n\). Acta Arith. 42(4), 367–389 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Robin, G.: Permanence de relations de récurrence dans certains développements asymptotiques. Publ. l’Inst. Math. 43(57), 17–25 (1988)

  33. Rosser, J.B.: The \(n\)-th prime is greater than \(n\, {\rm {ln}}\, n\). Proc. Lond. Math. Soc. 45, 21–44 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rosser, B.: Explicit bounds for some functions of prime numbers. Am. J. Math. 63, 211–232 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)

  36. Rosser, J.B., Schoenfeld, L.: Sharper bounds for the Chebyshev functions \({\vartheta }(x)\) and \({\psi }(x)\). Math. Comput. 29(129), 243–269 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Salvy, B.: Fast computation of some asymptotic functional inverses. J. Symb. Comput. 17(3), 227–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schoenfeld, L.: Sharper bounds for the Chebyshev functions \(\vartheta (x)\) and \(\psi (x)\). II. Math. Comput. 30(134), 337–360 (1976)

    MathSciNet  MATH  Google Scholar 

  39. Trudgian, T.: An improved upper bound for the error in the zero-counting formulae for Dirichlet \(L\)-functions and Dedekind zeta-functions. Math. Comput. 84(293), 1439–1450 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Trudgian, T.: Updating the error term in the prime number theorem. Ramanujan J. 39(2), 225–234 (2016). doi:10.1007/s11139-014-9656-6

  41. van de Lune, J., te Riele, H.J.J., Winter, D.T.: On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comput. 46(174), 667–681 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wedeniwski, S.: Zetagrid. In: Schoder, D., Fischbach, K., Teichmann, R. (eds.) Peer-to-Peer: Ökonomische, Technische und Juristische Perspektiven, pp. 173–188. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Dusart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dusart, P. Explicit estimates of some functions over primes. Ramanujan J 45, 227–251 (2018). https://doi.org/10.1007/s11139-016-9839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9839-4

Keywords

Mathematics Subject Classification

Navigation