Skip to main content
Log in

An algebraic interpretation of the multivariate q-Krawtchouk polynomials

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The multivariate quantum q-Krawtchouk polynomials are shown to arise as matrix elements of “q-rotations” acting on the state vectors of many q-oscillators. The focus is put on the two-variable case. The algebraic interpretation is used to derive the main properties of the polynomials: orthogonality, duality, structure relations, difference equations, and recurrence relations. The extension to an arbitrary number of variables is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The polynomials \(\kappa _{n}(x;p,N)\) agree with \(K_n(x;p,N)\) in [19, Sect. 9.11] up to a normalization factor. In this paper, the uppercase K are reserved for the multivariate polynomials.

  2. Let us note that in [7, 11], a different definition of Tratnik’s two-variable Krawtchouk polynomials was used. The aforementioned algebraic interpretation is valid for both definitions.

  3. The polynomials \(k_{n}(x; p,N;q)\) agree with \(K_n^{qtm}(q^x; p, N, q)\) of [19, Sect. 14.14] up to a normalization factor.

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Biedenharn, L.C.: The quantum group \(SU_q(2)\) and a \(q\)-analogue of the boson operator. J. Phys. A 22, L873–L878 (1989)

    Article  MATH  Google Scholar 

  3. Floreanini, R., Vinet, L.: Automorphisms of the \(q\)-oscillator algebra and basic orthogonal polynomials. Phys. Lett. A 180, 393–401 (1993)

    Article  MathSciNet  Google Scholar 

  4. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal \(q\)-Racah polynomials. Ramanujan J. 13, 389–405 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Genest, V.X., Vinet, L.: The multivariate Hahn polynomials and the singular oscillator. J. Phys. A 47, 455201 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Genest, V.X., Vinet, L., Zhedanov, A.: The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states. J. Phys. A 46, 505203 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Genest, V.X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states. J. Phys. A 47, 215204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Genest, V.X., Miki, H., Vinet, L., Zhedanov, A.: The multivariate Meixner polynomials as matrix elements of \(SO(d, 1)\) representations on oscillator states. J. Phys. A 47, 045207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Genest, V. X., Post, S., Vinet, L., Yu, G.-F., Zhedanov, A.: \(q\)-Rotations and Krawtchouk polynomials. Ramanujan J., 2015. arXiv:1408.5292v2

  11. Geronimo, J., Iliev, P.: Bispectrality of multivariable Racah–Wilson polynomials. Constr. Approx. 31, 417–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griffiths, R.C.: Orthogonal polynomials on the multinomial distribution. Aust. J. Stat. 3, 27–35 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griffiths, R.C., Spanò, D.: Multivariate Jacobi and Laguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate Hahn and Meixner polynomials. Bernoulli 17, 1095–1125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayashi, T.: \(Q\)-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127, 129–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoare, M., Rahman, M.: A probabilistic origin for a new class of bivariate polynomials. SIGMA Symmetry Integr. Geom. Methods Appl. 4, 89–106 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Iliev, P.: Bispectral commuting difference operators for multivariable Askey–Wilson polynomials. Trans. Am. Math. Soc. 363, 1577–1598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iliev, P., Terwilliger, P.: The Rahman polynomials and the Lie algebra \(\mathfrak{sl}_3(\mathbb{C})\). Trans. Am. Math. Soc. 364, 4225–4238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karlin, S., McGregor, J.: Linear growth models with many types and multidimensional Hahn polynomials. In: Askey, R. (ed.) Theory and Applications of Special Functions, pp. 261–268. Academic Press, New York (1975)

    Chapter  Google Scholar 

  19. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  20. Koornwinder, T.: Krawtchouk polynomials, a unification of two different group theoretic interpretations. SIAM J. Math. Anal. 13(6), 1011–1023 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Post, S.: Racah polynomials and recoupling schemes of \(\mathfrak{su}(1,1)\). SIGMA Symmetry Integr. Geom. Methods Appl. 11, 57–73 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Rosengren, H.: Multivariable orthogonal polynomials and coupling coefficients for discrete series representations. SIAM J. Math. Anal. 30, 233–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosengren, H.: Multivariable \(q\)-Hahn polynomials as coupling coefficients for quantum algebra representations. Int. J. Math. Math. Sci. 28, 331–358 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scarabotti, F.: Multidimensional Hahn polynomials, intertwining functions on the symmetric group and Clebsch–Gordon coefficients. Methods Appl. Anal. 14, 355–386 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Scarabotti, F.: The tree method for multidimensional \(q\)-Hahn and \(q\)-Racah polynomials. Ramanujan J. 25, 57–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-continuous families. J. Math. Phys. 32, 2065 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tratnik, M.V.: Some multivariable orthogonal polynomials of the Askey tableau-discrete families. J. Math. Phys. 32, 2337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vilenkin, NJa, Klimyk, A.U.: Representation of Lie Groups and Special Functions, Vol. 1. Mathematics and Its Applications (Soviet Series), vol. 72. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  29. Zhedanov, A.: \(Q\) rotations and other \(Q\) transformations as unitary nonlinear automorphisms of quantum algebras. J. Math. Phys. 34, 2631–2647 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Zhedanov for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent X. Genest.

Additional information

VXG is supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). The research of LV is supported in part by NSERC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genest, V.X., Post, S. & Vinet, L. An algebraic interpretation of the multivariate q-Krawtchouk polynomials. Ramanujan J 43, 415–445 (2017). https://doi.org/10.1007/s11139-016-9776-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-016-9776-2

Keywords

Mathematics Subject Classification

Navigation