Skip to main content
Log in

Partitions, quasimodular forms, and the Bloch–Okounkov theorem

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

We give a very short proof of the Bloch–Okounkov theorem on the quasimodularity of certain functions defined by sums over partitions, and also show how to make their map \(\mathfrak {s}\mathfrak {l}_2\)-equivariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacher R., Manivel, L.: Hooks and powers of parts in partitions. Sém. Lothar. Comb. 47, 11 (2001/02). Article B47d

  2. Bessenrodt, C.: On hooks of Young diagrams. Ann. Comb. 2, 103–110 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, S., Okounkov, A.: The character of the infinite wedge representation. Adv. Math. 149, 1–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Spaces of Curves. Progress in Mathematics, vol. 129. Birkhäuser, Boston (1995)

    Chapter  Google Scholar 

  5. Han, G.- N.: An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849v3

  6. Han, G.- N.: The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications. arXiv:0805.1398

  7. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Spaces of Curves. Progress in Mathematics, pp. 165–172. Birkhäuser, Boston (1995)

    Chapter  Google Scholar 

  8. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. The Unity of Mathematics. Progress in Mathematics, vol. 244, 525th edn, p. 596. Birkhäuser, Boston (2006)

    Google Scholar 

  9. Rudd, R.: The string partition function for QCD on the torus. arXiv:hep-th/9407176

  10. Zagier, D.: Elliptic modular forms and their applications. In: Ranestad, K., Bruinier, J.H., Harder, G., van der Geer, G., Zagier, D. (eds.) The 1–2–3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway. Universitext, pp. 1–103. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Zagier.

Additional information

In fond memory of Marvin Knopp, wonderful mathematician and friend, who made one feel happy to be human.

Appendix: Table of q-brackets up to weight 8

Appendix: Table of q-brackets up to weight 8

We give a list of \(\langle f\rangle _q\) for all elements f of \(\Lambda _*\) of even weight \(\le 8\), using Ramanujan’s notations \(P=E_2\), \(Q=E_4\), \(R=E_6\).

\(\langle 1\rangle _q =1\)

\(\langle Q_2^4\rangle _q = \dfrac{-15P^4 + 180QP^2 - 320RP + 156Q^2}{331776}\)

\(\langle Q_2\rangle _q = \dfrac{-P}{24}\)

\(\langle Q_2^2Q_4\rangle _q = \dfrac{75P^4 - 144QP^2 - 128RP + 204Q^2}{3317760 }\)

\(\langle Q_2^2\rangle _q=\dfrac{-P^2+2Q}{576}\)

\(\langle Q_2Q_3^2\rangle _q = \dfrac{25P^4 - 57QP^2 + 2RP + 30Q^2}{622080} \)

\(\langle Q_4\rangle _q=\dfrac{5P^2+2Q}{5760}\)

\(\langle Q_2Q_6\rangle _q = \dfrac{-175P^4 - 168QP^2 + 160RP + 276Q^2}{69672960}\)

\(\langle Q_2^3\rangle _q =\dfrac{-3P^3 + 18QP - 16R}{13824}\)

\(\langle Q_3Q_5\rangle _q = \dfrac{-35P^4 - 21QP^2 + 26RP + 30Q^2}{4354560}\)

\(\langle Q_2Q_4\rangle _q=\dfrac{15P^3 - 6QP - 16R}{138240}\)

\(\langle Q_4^2\rangle _q = \dfrac{-2625P^4 - 1260QP^2 + 1600RP + 2628Q^2}{232243200}\)

\(\langle Q_3^2\rangle _q=\dfrac{5P^3 - 3QP - 2R}{25920}\)

\(\langle Q_8\rangle _q = \dfrac{175P^4 + 420QP^2 + 320RP + 228Q^2}{1393459200}\)

\(\langle Q_6\rangle _q=\dfrac{-35P^3 - 42QP - 16R}{2903040}\)

 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagier, D. Partitions, quasimodular forms, and the Bloch–Okounkov theorem. Ramanujan J 41, 345–368 (2016). https://doi.org/10.1007/s11139-015-9730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9730-8

Keywords

Mathematics Subject Classification

Navigation