Skip to main content
Log in

Ramanujan sums as supercharacters

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The theory of supercharacters, recently developed by Diaconis-Isaacs and André, is used to derive the fundamental algebraic properties of Ramanujan sums. This machinery frequently yields one-line proofs of difficult identities and provides many novel formulas. In addition to exhibiting a new application of supercharacter theory, this article also serves as a blueprint for future work since some of the abstract results we develop are applicable in much greater generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiar, M., Andre, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J.-C., Pang, A., Saliola, F., Tevlin, L., Thibon, J.-Y., Thiem, N., Venkateswaran, V., Ryan Vinroot, C., Yan, N., Zabrocki, M.: Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Adv. Math. 229, 2310–2337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, D.R., Apostol, T.M.: The evaluation of Ramanujan’s sum and generalizations. Duke Math. J. 20, 211–216 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  3. André, C.A.M.: Basic characters of the unitriangular group. J. Algebra 175(1), 287–319 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. André, C.A.M.: The basic character table of the unitriangular group. J. Algebra 241(1), 437–471 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. André, C.A.M.: Basic characters of the unitriangular group (for arbitrary primes). Proc. Am. Math. Soc. 130(7), 1943–1954 (2002). (Electronic)

    Article  MATH  Google Scholar 

  6. André, C.A.M., Neto, A.M.: A supercharacter theory for the Sylow p-subgroups of the finite symplectic and orthogonal groups. J. Algebra 322, 1273–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arias-Castro, E., Diaconis, P., Stanley, R.: A super-class walk on upper-triangular matrices. J. Algebra 278(2), 739–765 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balandraud, É.: An application of Ramanujan sums to equirepartition modulo an odd integer. Unif. Distrib. Theory 2(2), 1–17 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Benidt, S.G., Hall, W.R.S., Hendrickson, A.O.F.: Upper and lower semimodularity of the supercharacter theory lattices of cyclic groups. arXiv:1203.1638

  10. Brumbaugh, J.L., Bulkow, M., Fleming, P.S., Garcia, L.A., Garcia, S.R., Karaali, G., Michal, M., Turner, A.P.:. Supercharacters, exponential sums, and the uncertainty principle. Preprint. http://arxiv.org/abs/1208.5271

  11. Cohen, E.: An extension of Ramanujan’s sum. Duke Math. J. 16, 85–90 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, E.: Trigonometric sums in elementary number theory. Am. Math. Mon. 66, 105–117 (1959)

    Article  MATH  Google Scholar 

  13. Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. XI. Interscience, New York (1962)

    MATH  Google Scholar 

  14. Diaconis, P., Isaacs, I.M.: Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360(5), 2359–2392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Diaconis, P., Thiem, N.: Supercharacter formulas for pattern groups. Trans. Am. Math. Soc. 361(7), 3501–3533 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Droll, A.: A classification of Ramanujan unitary Cayley graphs. Electron. J. Comb. 17(1), 6 (2010). Note 29

    MathSciNet  Google Scholar 

  17. Erdős, P., Vaughan, R.C.: Bounds for the r-th coefficients of cyclotomic polynomials. J. Lond. Math. Soc. 8, 393–400 (1974)

    Article  Google Scholar 

  18. Fleming, P.S., Garcia, S.R., Karaali, G.: Classical Kloosterman sums: representation theory, magic squares, and Ramanujan multigraphs. J. Number Theory 131(4), 661–680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hardy, G.H.: Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press, Cambridge (1940)

    Google Scholar 

  20. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Clarendon, New York (1979)

    MATH  Google Scholar 

  21. Haukkanen, P.: Regular class division of integers (mod r). Notes Number Theory Discret. Math. 6(3), 82–87 (2000)

    MathSciNet  Google Scholar 

  22. Hendrickson, A.O.F.: Supercharacter theories of cyclic p-groups. ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.). The University of Wisconsin, Madison. (2008)

  23. Hendrickson, A.O.F.: Supercharacter theory constructions corresponding to Schur ring products. Commun. Algebra 40(12), 4420–4438 (2012). doi:10.1080/00927872.2011.602999

    Article  MathSciNet  MATH  Google Scholar 

  24. Hölder, O.: Fusions of character tables and Schur rings of abelian groups. Pr. Mat.-Fiz. 43, 13–23 (1936)

    Google Scholar 

  25. Humphries, S.P., Johnson, K.W.: Fusions of character tables and Schur rings of abelian groups. Commun. Algebra 36(4), 1437–1460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Isaacs, I.M.: Character Theory of Finite Groups. AMS Chelsea Publishing, Providence (2006). Corrected reprint of the 1976 original. Academic Press, New York, MR0460423

    MATH  Google Scholar 

  27. James, G., Liebeck, M.: Representations and Characters of Groups, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  28. Jensen, J.L.W.V.: Et nyt udtryk for den talteoretiske funktion σμ(n)=m(n). In: Beretning on dem 3 Skandinaviske Matematiker-Kongres (1915)

    Google Scholar 

  29. Johnson, K.W., Smith, J.D.H.: Characters of finite quasigroups. III. Quotients and fusion. Eur. J. Comb. 10(1), 47–56 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Johnson, K.R.: A reciprocity law for Ramanujan sums. Pac. J. Math. 98(1), 99–105 (1982)

    Article  MATH  Google Scholar 

  31. Johnson, K.R.: Reciprocity in Ramanujan’s sum. Math. Mag. 59(4), 216–222 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, K.W., Poimenidou, E.: Generalised classes in groups and association schemes: Duals of results on characters and sharpness. Eur. J. Comb. 20(1), 87–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jutila, M.: Distribution of rational numbers in short intervals. Ramanujan J. 14(2), 321–327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kesava Menon, P.: On Vaidyanathaswamy’s class division of the residue classes modulo ‘N’. J. Indian Math. Soc. 26, 167–186 (1962)

    MathSciNet  Google Scholar 

  35. Kesava Menon, P.: On functions associated with Vaidyanathaswamy’s algebra of classes mod n. Indian J. Pure Appl. Math. 3(1), 118–141 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Kluyver, J.C.: Some formulae concerning the integers less than n and prime to n. In: Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), vol. 9, pp. 408–414 (1906)

    Google Scholar 

  37. Konvalina, J.: A generalization of Waring’s formula. J. Comb. Theory, Ser. A 75(2), 281–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kutzko, P.C.: The cyclotomy of finite commutative P.I.R.’s. Ill. J. Math. 19, 1–17 (1975)

    MathSciNet  MATH  Google Scholar 

  39. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, 2nd edn. Chelsea, New York (1953). With an appendix by P.T. Bateman

    MATH  Google Scholar 

  40. Lehmer, D.H.: Mahler’s matrices. J. Aust. Math. Soc. 1, 385–395 (1959/1960)

    Article  MathSciNet  Google Scholar 

  41. Lucht, L.G.: A survey of Ramanujan expansions. Int. J. Number Theory 6(8), 1785–1799 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maze, G.: Partitions modulo n and circulant matrices. Discrete Math. 287(1–3), 77–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. McCarthy, P.J.: Introduction to Arithmetical Functions. Universitext. Springer, New York (1986)

    Book  MATH  Google Scholar 

  44. Motose, K.: Ramanujan’s sums and cyclotomic polynomials. Math. J. Okayama Univ. 47, 65–74 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Nanda, V.C.: Generalizations of Ramanujan’s sum to matrices. J. Indian Math. Soc. 48(1–4), 177–187 (1986). 1984

    MathSciNet  MATH  Google Scholar 

  46. Nathanson, M.B.: Additive Number Theory. Graduate Texts in Mathematics, vol. 164. Springer, New York (1996). The classical bases

    Google Scholar 

  47. Nicol, C.A.: Some formulas involving Ramanujan sums. Can. J. Math. 14, 284–286 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. Planat, M., Minarovjech, M., Saniga, M.: Ramanujan sums analysis of long-period sequences and 1/f noise. Europhys. Lett. 85, 40005 (2009)

    Article  Google Scholar 

  49. Planat, M., Rosu, H., Perrine, S.: Ramanujan sums for signal processing of low-frequency noise. Phys. Rev. A 66(5), 056128 (2002)

    MathSciNet  Google Scholar 

  50. Planat, M., Rosu, H.C.: Cyclotomy and Ramanujan sums in quantum phase locking. Phys. Lett. A 315(1–2), 1–5 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ramanathan, K.G.: Some applications of Ramanujan’s trigonometrical sum C m (n). Proc. Indian Acad. Sci., Sect. A 20, 62–69 (1944)

    MathSciNet  MATH  Google Scholar 

  52. Ramanathan, K.G., Subbarao, M.V.: Some generalizations of Ramanujan’s sum. Can. J. Math. 32(5), 1250–1260 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. In: Collected papers of Srinivasa Ramanujan, pp. 179–199. AMS Chelsea Publ., Providence (2000). Trans. Cambridge Philos. Soc. 22(13), 259–276 (1918)

    Google Scholar 

  54. Ramaré, O.: Eigenvalues in the large sieve inequality. Funct. Approx. Comment. Math. 37(part 2), 399–427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rao, K.N., Sivaramakrishnan, R.: Ramanujan’s sum and its applications to some combinatorial problems. In: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. II, Winnipeg, Man., 1980, vol. 31, pp. 205–239 (1981)

    Google Scholar 

  56. Schwarz, W.: Ramanujan expansions of arithmetical functions. In: Ramanujan revisited, Urbana-Champaign, Ill., 1987, pp. 187–214. Academic Press, Boston (1988)

    Google Scholar 

  57. Schwarz, W., Spilker, J.: An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties In: Arithmetical Functions. London Mathematical Society Lecture Note Series, vol. 184. Cambridge University Press, Cambridge (1994)

    Chapter  Google Scholar 

  58. Sugunamma, M.: Eckford Cohen’s generalizations of Ramanujan’s trigonometrical sum C(n,r). Duke Math. J. 27, 323–330 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tam, T.-Y.: On the cyclic symmetry classes. J. Algebra 182(3), 557–560 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  60. Thiem, N.: Branching rules in the ring of superclass functions of unipotent upper-triangular matrices. J. Algebr. Comb. 31(2), 267–298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Thiem, N., Venkateswaran, V.: Restricting supercharacters of the finite group of unipotent uppertriangular matrices. Electron. J. Comb. 16(1), 32 (2009). Research paper 23

    MathSciNet  Google Scholar 

  62. Tóth, L.: Some remarks on Ramanujan sums and cyclotomic polynomials. Bull. Math. Soc. Sci. Math. Roum. 53(101), 277–292 (2010)

    Google Scholar 

  63. von Sterneck, R.D.: Sitzungsber. Math.-Natur. Kl. Kaiserl. Akad. Wiss. Wien 111, 1567–1601 (1902)

    MATH  Google Scholar 

  64. Yan, N.: Representation Theory of the Finite Unipotent Linear Groups. Ph.D. thesis, University of Pennsylvania (2001). Also see [65]

  65. Yan, N.: Representations of finite unipotent linear groups by the method of clusters. ArXiv e-prints, April 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Ramon Garcia.

Additional information

S.R. Garcia partially funded by NSF grant DMS-1001614. G. Karaali partially funded by a NSA Young Investigator Award.

Appendix: Computing the matrix M i (p α)

Appendix: Computing the matrix M i (p α)

This appendix contains a detailed derivation of the description (4.11) for the matrix M i (p α) given in Sect. 4.2.

The proof of Lemma 4.1 tells us that a i,j,k is independent of the particular chosen representative z of K k . Since \(\mathbb{Z}/p^{\alpha }\mathbb{Z}\) is abelian, we also note that

$$ a_{i,j,k} = a_{j,i,k} $$
(A.1)

and

$$ a_{i,j,k} =0 \quad{\iff}\quad a_{i,k,j}=0. $$
(A.2)

Statement (A.2) requires some explanation. Observe that a i,j,k =0 holds if and only if x+y=z has no solutions (x,y,z) in K i ×K j ×K k . Since K j =−K j and K k =−K k by (4.9), it follows that the preceding happens if and only if x+z′=y′ has no solutions (x,z′,y′) in K i ×K k ×K j . On the other hand, it is important to note that a i,j,k =a i,k,j does not hold in general since the fixed representative z of K k used in (4.10) plays a distinguished role.

We first break down the evaluation of the a i,j,k into five special cases, from which the structure of the matrix M i =M i (p α) can eventually be deduced.

Lemma A.1

For \(G = \mathbb{Z}/p^{\alpha}\mathbb{Z}\) and \(K_{i} = \{ xp^{\alpha -i+1} \in\mathbb{Z}/p^{\alpha}\mathbb{Z}: p \nmid x\}\), we have

  1. (a)

    if k>i and jk, then a i,j,k =0,

  2. (b)

    if j=k>i, then a i,j,k =ϕ(p i−1),

  3. (c)

    if j=k=i, then a i,j,k =p i−1−2p i−2,

  4. (d)

    if j>k and ij, then a i,j,k =0,

  5. (e)

    if i=j>k, then a i,j,k =ϕ(p i−1).

Proof

We first prove (a). Letting k>i and jk, we may assume that ij by (A.1). If x i =xp αi+1 and y j =yp αj+1 belong to K i and K j , respectively, then it follows that

$$ x_i + y_j = p^{\alpha-j+1} \bigl(xp^{j-i} + y \bigr) $$
(A.3)

belongs to K j since xp ji+y is not divisible by p (recall that px and py by the definition of K i and K j ). Since jk, it follows from (A.3) that x i +y j cannot belong to K k , from which it follows that a i,j,k =0.

Next we consider (b). Suppose that j=k>i and fix z k =zp αk+1 in K k . Since j=k, the computation (A.3) tells us that for each x i in K i , there exists a unique y j =zxp ji such that x i +y j =z k . Thus, a i,j,k =|K i |=ϕ(p i−1).

The proof of (c) is somewhat more involved. Let i=j=k and fix z k =zp αk+1 where pz. For any element x i =xp nk+1 of K i =K k , there exists a unique a 0 in \(\mathbb{Z}/p^{\alpha} \mathbb{Z}\) such that

$$ x_i + a_0 = z_k. $$
(A.4)

Since p αk+1 divides both x i and z k , it must also divide a 0, so that we can write a 0=ap nk+1 for some a. In light of (A.4), we now have x+a=z, so that a=zx. Therefore a 0 belongs to K k if and only if p∤(zx). We now note that if p|(zx), then x i would serve as a solution to x i +y=z k where y belongs to some K with <i=k. By statement (b), it follows that

$$\begin{aligned} a_{i,j,k} &= |K_k| - \sum_{\ell=1}^{k-1} \phi \bigl(p^{\ell-1} \bigr) \\ &= \phi \bigl(p^k \bigr) - \sum_{\ell=2}^{k-1} \bigl(p^{\ell-1}-p^{\ell-2} \bigr) -1 \\ &= \bigl(p^{k-1} - p^{k-2} \bigr)- \bigl(p^{k-2} - p^{k-3} \bigr) - \cdots- (p-1) -1 \\ &= p^{k-1} - 2 p^{k-2}, \end{aligned}$$

as claimed.

Now we consider statement (d). Suppose that j>k and ij. In light of (A.1), we may assume that i<j. Maintaining the same notation and conventions as in the proof of statement (a), we again arrive at (A.3) and conclude that x i +y j belongs to K j . Since j>k, we conclude that a i,j,k =0.

Finally, let us prove (e). Suppose that i=j>k and let z k =zp αk+1 in K k be given. For each x i =xp αi+1 in K i , we have

$$ xp^{\alpha-i+1} + \bigl(zp^{i-k} - x \bigr)p^{\alpha-i+1} = \bigl(zp^{i-k} \bigr)p^{\alpha-i+1} = zp^{\alpha-k+1} = z_k. $$
(A.5)

Now p|(zp ik) because i>k, so it follows that p∤(zp ikx) since px. Therefore (zp ikx)p αi+1 belongs to K i . Looking at (A.5), we conclude that for each x i in K i , there exists a unique y i in K i such that x i +y i =z k . Since i=j, we conclude that a i,j,k =|K i |=ϕ(p i−1), as desired. □

Having proven the preceding lemma, it is now straightforward to see that M i has the form (4.11). The complete reasoning is presented below.

  1. (1)

    If j,k<i, then (M i ) j,k =0. In other words, the upper-left (i−1)×(i−1) submatrix of M i contains only zeros. Indeed, letting i′=j and j′=i>k (so that i′≠j′ since j<i), it follows that (M i ) j,k =a i,j,k =a j,i,k =a i′,j′,k =0 by (A.1) and (d) of Lemma A.1.

  2. (2)

    If j<i=k, then (M i ) j,k =ϕ(p j−1), so that the first i−1 entries of the ith column of M i are given by 1,ϕ(p),ϕ(p 2),…,ϕ(p i−2). As before, we set i′=j and j′=i and observe that (M i ) j,k =a i,j,k =a j,i,k =a i′,j′,k =ϕ(p i′−1)=ϕ(p j−1) by (b) of Lemma A.1 since j′=k>i′.

  3. (3)

    If i=j>k, then (M i ) j,k =ϕ(p i−1), so that the first (i−1) entries of the ith row of M i are each ϕ(p i−1). To see this, simply note that (M i ) j,k =a i,j,k =ϕ(p i−1) by (e) of Lemma A.1.

  4. (4)

    If i=j=k, then (M i ) j,k =a i,i,i =p i−1−2p i−2 by (c) of Lemma A.1.

  5. (5)

    If j=k>i, then (M i ) j,k =ϕ(p i−1). In other words, the final (n+1−i) entries along the main diagonal of M i are ϕ(p i−1). This follows immediately from (b) of Lemma A.1.

  6. (6)

    If j>i,k, then (M i ) j,k =0 follows from (d) of Lemma A.1. Therefore the final (n+1−i) rows of M i have only zeros to the left of the main diagonal.

  7. (7)

    If i,j<k, then (M i ) j,k =0. In other words, the last (n+1−i) columns of M i have only zeros above the main diagonal. This follows immediately from (a) of Lemma A.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, C.F., Garcia, S.R. & Karaali, G. Ramanujan sums as supercharacters. Ramanujan J 35, 205–241 (2014). https://doi.org/10.1007/s11139-013-9478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-013-9478-y

Keywords

Mathematics Subject Classification

Navigation