Skip to main content
Log in

Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper we consider the hyperbolic Kac–Moody algebra \(\mathcal {F}\) associated with the generalized Cartan matrix . Its connection to Siegel modular forms of genus 2 was first studied by A. Feingold and I. Frenkel. The denominator function of \(\mathcal{F}\) is not an automorphic form. However, Gritsenko and Nikulin extended \(\mathcal{F}\) to a generalized Kac–Moody algebra whose denominator function is a Siegel modular form. Using the Borcherds denominator identity, the denominator function can be written as an infinite product. The exponents that appear in the product are given by Fourier coefficients of a weak Jacobi form. P. Niemann also constructed a generalized Kac–Moody algebra which contains \(\mathcal {F}\) and whose denominator function is related to a product of Dedekind η-functions. In particular, root multiplicities of the generalized Kac–Moody algebra are determined by Fourier coefficients of a modular form. As the main results of this paper, we compute asymptotic formulas for these Fourier coefficients using the method of Hardy–Ramanujan–Rademacher, and obtain an asymptotic bound for root multiplicities of the algebra \(\mathcal{F}\). Our method can be applied to other hyperbolic Kac–Moody algebras and to other modular forms as demonstrated in the later part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borcherds, R.E.: Automorphic forms on O s+2,2(R) and infinite products. Invent. Math. 120(1), 161–213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bringmann, K., Ono, K.: Arithmetic properties of coefficients of half-integral weight Maass–Poincare series. Math. Ann. 337, 591–612 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics, vol. 55. Birkhäuser Boston, Inc., Boston (1985)

    Book  MATH  Google Scholar 

  5. Feingold, A.J., Frenkel, I.B.: A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263(1), 87–144 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frenkel, I.B.: Representations of Kac–Moody algebras and dual resonance models. In: Applications of Group Theory in Physics and Mathematical Physics, Chicago, 1982. Lectures in Appl. Math., vol. 21, pp. 325–353. Amer. Math. Soc., Providence (1985)

    Google Scholar 

  7. Gritsenko, V.A., Nikulin, V.V.: Igusa modular forms and “the simplest” Lorentzian Kac–Moody algebras. Mat. Sb. 187(11), 27–66 (1996); translation in Sb. Math. 187(11), 1601–1641 (1996)

    Article  MathSciNet  Google Scholar 

  8. Gritsenko, V.A., Nikulin, V.V.: Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras. Am. J. Math. 119(1), 181–224 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53 (2004)

    MATH  Google Scholar 

  10. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  11. Kang, S.-J.: Root multiplicities of the hyperbolic Kac–Moody Lie algebra \(HA^{(1)}_{1}\). J. Algebra 160(2), 492–523 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kang, S.-J.: On the hyperbolic Kac–Moody Lie algebra \(HA_{1}^{(1)}\). Trans. Am. Math. Soc. 341(2), 623–638 (1994)

    MATH  Google Scholar 

  13. Kim, H.H., Lee, K.-H.: A family of generalized Kac–Moody algebras and deformation of modular forms. Int. J. Number Theory 8(5), 1107–1131 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, H.H., Lee, K.-H.: Rank 2 symmetric hyperbolic Kac–Moody algebras and Hilbert modular forms. Preprint, arXiv:1209.1860

  15. Klima, V.W., Misra, K.C.: Root multiplicities of the indefinite Kac–Moody algebras of symplectic type. Commun. Algebra 36(2), 764–782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  17. Lehner, J.: Discontinuous Groups and Automorphic Functions. Mathematical Surveys, No. VIII. American Mathematical Society, Providence (1964)

    Book  MATH  Google Scholar 

  18. Lehner, J.: On automorphic forms of negative dimension. Ill. J. Math. 8, 395–407 (1964)

    MathSciNet  MATH  Google Scholar 

  19. Lepowsky, J., Moody, R.V.: Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces. Math. Ann. 245(1), 63–88 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Niemann, P.: Some generalized Kac–Moody algebras with known root multiplicities. Mem. Amer. Math. Soc. 157(746) (2002)

  21. Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series. CBMS Regional Conference Series in Mathematics, vol. 102. American Mathematical Society, Providence (2004)

    Google Scholar 

  22. Sarnak, P.: Some Applications of Modular Forms. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Zagier, D.: Traces of singular moduli. In: Bogomolov, F., Katzarkov, L. (eds.) Motives, Polylogarithms, and Hodge Theory, pp. 211–244. Intl. Press, Somerville (2003)

    Google Scholar 

Download references

Acknowledgements

We would like to thank V. Gritsenko for helpful discussions. We also thank the referee for many useful remarks and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Lee.

Additional information

H.H. Kim partially supported by an NSERC grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.H., Lee, KH. Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms. Ramanujan J 32, 329–352 (2013). https://doi.org/10.1007/s11139-013-9474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-013-9474-2

Keywords

Mathematics Subject Classification (2000)

Navigation