Skip to main content
Log in

The effect of the individual chart with variable control limits on the river pollution monitoring

  • Published:
Quality & Quantity Aims and scope Submit manuscript

Abstract

This study performs a model to evaluate the river water quality monitoring system. The standard River Pollution Index which includes dissolved oxygen (DO), biochemical oxygen demand (BOD5), suspended solids (SS), and ammonia nitrogen (NH3-N) is collected from years 2006 to 2010 for monitoring of river water quality. Furthermore, control chart technology can monitor the river pollution and signal the aggravation of water quality. This study proposes an individual control chart with variable control limits (VCL individual chart) and verifies this chart can quickly signal the mean change of both normal can skew populations in statistical performances. In addition, this study also presents a real case that VCL individual chart is applied on monitoring the water quality of Taiwan’s river. This case shows the VCL individual chart controls successfully the river pollution, and this chart is very suitable to apply monitoring the water quality of rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Celano G.: Robust design of adaptive control charts for manual manufacturing/inspection workstations. J. Appl. Stat. 36(2), 181–203 (2009)

    Article  Google Scholar 

  • Costa A.F.B.: \({\overline X }\) charts with variable sample size. J. Qual. Technol. 26, 155–163 (1994)

    Google Scholar 

  • Costa A.F.B.: \({\overline X }\) chart with variable sample size and sampling intervals. J. Qual. Technol. 29, 197–204 (1997)

    Google Scholar 

  • Costa A.F.B.: Joint \({\overline X }\) and R charts with variable sample sizes and sampling intervals. J. Qual. Technol. 31, 387–397 (1999)

    Google Scholar 

  • De Magalhães M.S., Costa A.F.B., Epprecht E.K.: Constrained optimization model for the design of an adaptive \({\overline X }\) chart. Int. J. Prod. Res. 40, 3199–3218 (2002)

    Article  Google Scholar 

  • De Magalhães M.S., Epprecht E.K., Costa A.F.B.: Economic design of a Vp \({\overline X }\) chart. Int. J. Prod. Econom. 74, 191–200 (2001)

    Article  Google Scholar 

  • Lee P.H.: Adaptive R charts with variable parameters. Comput. Stat. Data Anal. 55, 2003–2010 (2011)

    Article  Google Scholar 

  • Lin Y.C.: The variable parameters control \({\overline X }\) charts for monitoring autocorrelated processes. Commun. Stat. Simulat. Comput. 38(4), 729–749 (2009)

    Article  Google Scholar 

  • Lin Y.C., Chou C.Y.: Non-normality and the variable parameters \({\overline X }\) control charts. Eur. J. Operat. Res. 176, 361–373 (2007)

    Article  Google Scholar 

  • Luo Y., Li Z., Wang Z.: Adaptive CUSUM control chart with variable sampling intervals. Comput. Stat. Data Anal. 53, 2693–2701 (2009)

    Article  Google Scholar 

  • Mahadik S.B., Shirke D.T.: A special variable sample size and sampling interval \({\overline X }\) chart. Commun. Stat. Theor. Methods 38(8), 1284–1299 (2009)

    Article  Google Scholar 

  • Prabhu S.S., Montgomery D.C., Runger G.C.: A combined adaptive sample size and sampling interval \({\overline X }\) control scheme. J. Qual. Technol. 26, 164–176 (1994)

    Google Scholar 

  • Prabhu S.S., Runger G.C., Keats J.B.: \({\overline X }\) chart with adaptive sample sizes. Int. J. Prod. Res. 31, 2895–2909 (1993)

    Article  Google Scholar 

  • Reynolds M.R. Jr: Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. J. Qual. Technol. 28, 199–212 (1996)

    Google Scholar 

  • Reynolds M.R. Jr: Variable–sample–interval control charts with sampling at fixed times. IIE Trans. 28, 497–510 (1996)

    Article  Google Scholar 

  • Reynolds M.R. Jr, Amin R.W., Arnold J.C., Nachlas J.A.: \({\overline X }\) charts with variable sampling intervals. Technometrics 30, 181–192 (1988)

    Google Scholar 

  • Shu L.J., Jiang W.: A Markov chain model for the adaptive CUSUM control chart. J. Qual. Technol. 38, 135–147 (2006)

    Google Scholar 

  • Shu L.J., Jiang W., Wu Z.: Adaptive CUSUM procedures with Markovian mean estimation. Comput. Stat. Data Anal. 52, 4395–4409 (2008)

    Article  Google Scholar 

  • Torngs C.C., Lee P.H.: The performance of double sampling \({\overline X }\) control charts under non-normality. Commun. Stat. Simul. Comput. 38(3), 541–557 (2009)

    Article  Google Scholar 

  • Zimmer L.S., Montogomery D.C., Runger G.C.: Evaluation of a three-state adaptive sample size \({\overline X}\) control chart. Int. J. Prod. Res. 36, 733–743 (1998)

    Article  Google Scholar 

  • Zimmer L.S., Montogomery D.C., Runger G.C.: Guidelines for the application of adaptive control charting scheme. Int. J. Prod. Res. 38, 1977–1992 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsien Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, PH., Huang, YH., Kuo, TI. et al. The effect of the individual chart with variable control limits on the river pollution monitoring. Qual Quant 47, 1803–1812 (2013). https://doi.org/10.1007/s11135-011-9627-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11135-011-9627-6

Keywords

Navigation