Skip to main content
Log in

Application of a Portable Infrared Instrument for Simultaneous Analysis of Sugars, Asparagine and Glutamine Levels in Raw Potato Tubers

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The level of reducing sugars and asparagine in raw potatoes is critical for potato breeders and the food industry for production of commonly consumed food products including potato chips and French fries. Our objective was to evaluate the use of a portable infrared instrument for the rapid quantitation of major sugars and amino acids in raw potato tubers using single-bounce attenuated total reflectance (ATR) and dial path accessories as an alternative to time-consuming chromatographic techniques. Samples representing a total of 84 experimental and commercial potato varieties harvested in two consecutive growing seasons (2012 and 2013) were used in this study. Samples had wide ranges of sugars determined by HPLC-RID (non-detectable (ND)-7.7 mg glucose, ND-9.4 mg fructose and 0.4–5.4 mg sucrose per 1 g fresh weight), and asparagine and glutamine levels determined by GC-FID (0.7–2.9 mg and 0.3–1.7 mg per 1 g fresh weight). Infrared spectra collected from 64 varieties were used to create partial least squares regression (PLSR) calibration models that predicted the sugar and amino acid levels in an independent set of 16 validation potato varieties. Excellent linear correlations between infrared predicted and reference values were obtained. PLSR models had a high correlation coefficient of prediction (rPred >0.95) and residual predictive deviation (RPD) values ranging between 3.1 and 5.5. Overall, the results indicated that the models could be used to simultaneously predict sugars, free asparagine and glutamine levels in the raw tubers, significantly benefiting potato breeding, certain aspects of crop management, crop production and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATR:

Attenuated total reflectance

GC-FID:

Gas chromatography-flame ionization detector

FTIR:

Fourier transform infrared spectroscopy

HPLC-RID:

High-performance liquid chromatography-refractive index detector

PLSR:

Partial least squares regression

rCV:

Correlation coefficient of cross-validation

RPD:

Residual predictive deviation

rPred:

Correlation coefficient of prediction

SECV:

Standard error of cross-validation

SEP:

Standard error of prediction

References

  1. Food and Agriculture Organization of the United Nations (FAOSTAT). http://faostat.fao.org/site/567/default.aspx#ancor. Accessed Jan 2 2014

  2. Haase NU (2011) Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers. J Near Infrared Spectrosc 19:37–45. doi:10.1255/jnirs.919

    Article  CAS  Google Scholar 

  3. Gerendás J, Heuser F, Sattelmacher B (2007) Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. J Plant Nutr 30:1499–1516. doi:10.1080/01904160701555846

    Article  Google Scholar 

  4. Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787. doi:10.1021/jf034180i

    Article  CAS  Google Scholar 

  5. IARC (1994) Acrylamide. In: IARC monographs on the evaluation of carcinogenic risks to humans, 60. (pp. 389–433) Lyon France: International Agency for Research on Cancer

  6. Granvogl M, Jezussek M, Koehler P, Schieberle P (2004) Quantitation of 3-aminopropionamide in potatoes a minor but potent precursor in acrylamide formation. J Agric Food Chem 52:4751–4757. doi:10.1021/jf049581s

    Article  CAS  Google Scholar 

  7. Friedman M (2003) Chemistry, biochemistry, and safety of acrylamide. A review. J Agric Food Chem 51:4504–4526. doi:10.1021/jf030204+

    Article  CAS  Google Scholar 

  8. Sowokinos J (1990) Stress-induced alterations in carbohydrate metabolism. In: Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. CAB International, Wallingford, pp 137–158

    Google Scholar 

  9. Olsson K, Svensson R, Roslund CA (2004) Tuber components affecting acrylamide formation and colour in fried potato: variation by variety, year, storage temperature and storage time. J Sci Food Agric 84:447–458. doi:10.1002/jsfa.1681

    Article  CAS  Google Scholar 

  10. Brunton NP, Gormley R, Butler F, Cummins E, Danaher M, Minihan M, O’Keeffe M (2007) A survey of acrylamide precursors in Irish ware potatoes and acrylamide levels in French fries. LWT-Food Sci Technol 40:1601–1609. doi:10.1016/j.lwt.2006.11.015

    Article  CAS  Google Scholar 

  11. Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amado R (2003) Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem 51:5556–5560. doi:10.1021/jf034344v

    Article  CAS  Google Scholar 

  12. Gökmen V, Palazoğlu TK (2008) Acrylamide formation in foods during thermal processing with a focus on frying. Food Bioprocess Technol 1:35–42. doi:10.1007/s11947-007-0005-2

    Article  Google Scholar 

  13. Rodriguez-Saona LE, Allendorf ME (2011) Use of FTIR for rapid authentication and detection of adulteration of food. Annu Rev Food Sci Technol 2:467–483. doi:10.1146/annurev-food-022510-133750

    Article  CAS  Google Scholar 

  14. Moseholm L (1988) Analysis of air pollution plant exposure data: the soft independent modelling of class analogy (SIMCA) and partial least squares modelling with latent variable (PLS) approaches. Environ Pollut 53:313–331. doi:10.1016/0269-7491(88)90043-7

    Article  CAS  Google Scholar 

  15. Brereton RG (2000) Introduction to multivariate calibration in analytical chemistry. Analyst 125:2125–2154. doi:10.1039/B003805I

    Article  CAS  Google Scholar 

  16. Saeys W, Mouazen AM, Ramon H (2005) Potential for onsite and online analysis of Pig manure using visible and near infrared reflectance spectroscopy. Biosyt Eng 91:393–402. doi:10.1016/j.biosystemseng.2005.05.001

    Article  Google Scholar 

  17. Kleinhenz MD, Moyseenko JB, Walker SD, Williams B (2013) Ohio Potato Germplasm Evaluation Report. Horticulture and Crop Science Series. http://potatoes.ncsu.edu/NE1014reports/HCS-810-Dec13-final.pdf. Accessed July 29 2014

  18. Biedermann M, Noti A, Biedermann-Brem S, Mozzetti V, Grob K (2002) Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitt Geb Lebensmittelunters Hyg 93(6):668–687

    CAS  Google Scholar 

  19. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173. doi:10.1016/S0079-6107(00)00021-3

    Article  CAS  Google Scholar 

  20. Max JJ, Chapados C (2007) Glucose and fructose hydrates in aqueous solution by IR spectroscopy. J Phys Chem A 111:2679–2689. doi:10.1021/jp066882r

    Article  CAS  Google Scholar 

  21. Lin CA, Ayvaz H, Rodriguez-Saona LE (2014) Application of portable and handheld infrared spectrometers for determination of sucrose levels in infant cereals. Food Anal Method 7:1407–1414. doi:10.1007/s12161-013-9763-9

    Article  Google Scholar 

  22. Wilkerson ED, Anthon GE, Barrett DM, Sayajon GFG, Santos AM, Rodriguez-Saona LE (2013) Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. J Agric Food Chem 61:2088–2095. doi:10.1021/jf304968f

    Article  CAS  Google Scholar 

  23. Mehrubeoglu M, Cote GL (1997) Determination of total reducing sugars in potato samples using near-infrared spectroscopy. Cereal Foods World 42:409–413

    CAS  Google Scholar 

  24. Chen JY, Miao Y, Zhang H, Matsunaga R (2004) Non-destructive determination of carbohydrate content in potatoes using near infrared spectroscopy. J Near Infrared Spectrosc 12:311–314. doi:10.1255/jnirs.439

    Article  CAS  Google Scholar 

  25. Hartmann R, Büning-Pfaue H (1998) NIR determination of potato constituents. Potato Res 41:327–334. doi:10.1007/BF02358965

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ohio Agricultural Research and Development Center for their financial support of this research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Ayvaz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 33 kb)

ESM 2

(DOC 1702 kb)

ESM 3

(DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayvaz, H., Santos, A.M., Moyseenko, J. et al. Application of a Portable Infrared Instrument for Simultaneous Analysis of Sugars, Asparagine and Glutamine Levels in Raw Potato Tubers. Plant Foods Hum Nutr 70, 215–220 (2015). https://doi.org/10.1007/s11130-015-0484-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0484-7

Keywords

Navigation