Skip to main content
Log in

Optically controlled quantum gates for three spin qubits in quantum dot–microcavity coupled systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate theoretically the possibility of achieving feasible solid-state quantum computing by compactly constructing a set of two or three quantum gates on stationary electron spin qubits, including the controlled NOT gate, Toffoli gate and Fredkin gate. In our schemes, both of the target qubits and control qubits are all encoded on the confined electron spins in quantum dots embedded in optical microcavities with two partially reflective mirrors. In this paper, the schemes are based on spin selective photon reflection from the microcavity and are achieved in deterministic ways by the sequential detection of the auxiliary photons. The feasibilities of the proposed schemes are estimated by high average fidelities of the gates which are achievable in both the weak coupling and the strong coupling regimes. Under the present technology, our proposed schemes are feasible, opening the promising perspectives for constructing a solid-state quantum computation and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    ADS  Google Scholar 

  3. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    ADS  Google Scholar 

  4. Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Monz, T., et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    ADS  Google Scholar 

  7. Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 084–092 (2003)

    MathSciNet  Google Scholar 

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)

    ADS  Google Scholar 

  10. Cory, D.G., et al.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)

    ADS  Google Scholar 

  11. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)

    ADS  Google Scholar 

  13. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    ADS  Google Scholar 

  14. Rauschenbeutel, A., et al.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)

    ADS  Google Scholar 

  15. Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)

    ADS  Google Scholar 

  16. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    ADS  Google Scholar 

  17. Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)

    ADS  Google Scholar 

  18. Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)

    ADS  Google Scholar 

  19. Xue, Z.Y., Zhu, S.L., You, J.Q., Wang, Z.D.: Implementing topological quantum manipulation with superconducting circuits. Phys. Rev. A 79, 040303(R) (2009)

    ADS  Google Scholar 

  20. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)

    ADS  Google Scholar 

  21. Ciorga, M., et al.: Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)

    ADS  Google Scholar 

  22. Elzerman, J.M., et al.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)

    ADS  Google Scholar 

  23. Petta, J.R., et al.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  Google Scholar 

  24. Greilich, A.D., et al.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)

    ADS  Google Scholar 

  25. Press, D., et al.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)

    ADS  Google Scholar 

  26. Atature, M., et al.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)

    ADS  Google Scholar 

  27. Atatüre, M., et al.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)

    Google Scholar 

  28. Hanson, R., et al.: Single-shot read out of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)

    ADS  Google Scholar 

  29. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    ADS  Google Scholar 

  30. Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    ADS  Google Scholar 

  31. Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)

    ADS  Google Scholar 

  32. Chen, P.C., Piermarocchi, C., Sham, L.J., Gammon, D., Steel, D.G.: Theory of quantum optical control of a single spin quantum dot. Phys. Rev. B 69, 075320 (2004)

    ADS  Google Scholar 

  33. Peter, E., et al.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    ADS  Google Scholar 

  34. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a doublesided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    ADS  Google Scholar 

  35. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    ADS  Google Scholar 

  36. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    ADS  Google Scholar 

  37. Brunner, N., Young, A.B., Hu, C.Y., Rarity, J.G.: Proposal for a loophole-free bell test based on spin-photon interaction in cavities. New J. Phys. 15, 105006 (2013)

    ADS  Google Scholar 

  38. Young, A.B., Hu, C.Y., Rarity, J.G.: Generating entanglement with low-Q factor microcavities. Phys. Rev. A 87, 012332 (2013)

    ADS  Google Scholar 

  39. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    ADS  Google Scholar 

  40. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    ADS  Google Scholar 

  41. Ren, B.C., Wei, H.R., Deng, F.G.: Laser, Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Phys. Lett. 10, 095202 (2013)

    Google Scholar 

  42. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    Google Scholar 

  43. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 15, 17671 (2013)

    ADS  Google Scholar 

  44. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    ADS  Google Scholar 

  45. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    ADS  Google Scholar 

  46. Han, Xue, Shi, Hu, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Sci. Rep. 5, 12790 (2015)

    ADS  Google Scholar 

  47. Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou, Yeon, Kyu-Hwang: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    ADS  Google Scholar 

  48. Guo, Qi, Cheng, Liu-Yong, Chen, Li, Wang, Hong-Fu, Zhang, Shou: Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities. Phys. Rev. A 90, 042327 (2014)

    ADS  Google Scholar 

  49. Shi, Hu, Cui, Wen-Xue, Wang, Dong-Yang, Bai, Cheng-Hua, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    ADS  Google Scholar 

  50. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)

    ADS  Google Scholar 

  51. Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–R1769 (1998)

    ADS  Google Scholar 

  52. Fischer, J., Trif, M., Coish, W., Loss, D.: Spin interaction, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009)

    ADS  Google Scholar 

  53. Toffoli T, Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science, vol. 84, pp. 632–644. Springer (1985)

  54. Shende, V., Markov, I.L., Bullock, S.: Synthesis of quantum logic circuits. IEEE Trans. Comput Aided Des. 25(6), 100 (2006)

    Google Scholar 

  55. Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)

    ADS  Google Scholar 

  56. Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)

    ADS  Google Scholar 

  57. Brunner, D., et al.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)

    ADS  Google Scholar 

  58. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  59. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Google Scholar 

  60. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    ADS  Google Scholar 

  61. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)

    ADS  Google Scholar 

  62. Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)

    ADS  Google Scholar 

  63. Young, A.B., Oulton, R., Hu, C.Y., Thijssen, A.C.T., Schneider, C., Reitzenstein, S., Kamp, M., Hofling, S., Worschech, L., Forchel, A., Rarity, J.G.: Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011)

    ADS  Google Scholar 

  64. Loo, V., Lanco, L., Lemaˆıtre, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett. 97, 241110 (2010)

    ADS  Google Scholar 

  65. Shende, V.V., Markov, I.L.: On the CNOT-cost of Toffoli gate. Quantum Inf. Comput. 9, 0461–0468 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Opt. Soc. Am. B 26, 2440 (2009)

    ADS  MathSciNet  Google Scholar 

  67. Langbein, W., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    ADS  Google Scholar 

  68. Kimble, H.J.: In Cavity Quantum Electrodynamics. Academic, San Diego (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program on Key Science Research of DPR of Korea (Grant No. 131-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Chol Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, NC., Choe, SI., Ko, MC. et al. Optically controlled quantum gates for three spin qubits in quantum dot–microcavity coupled systems. Quantum Inf Process 19, 5 (2020). https://doi.org/10.1007/s11128-019-2497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2497-x

Keywords

Navigation