Skip to main content
Log in

On the distance of stabilizer quantum codes from J-affine variety codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Self-orthogonal J-affine variety codes have been successfully used to obtain quantum stabilizer codes with excellent parameters. In a previous paper we gave formulae for the dimension of this family of quantum codes, but no bound for the minimum distance was given. In this work, we show how to derive quantum stabilizer codes with designed minimum distance from J-affine variety codes and their subfield-subcodes. Moreover, this allows us to obtain new quantum codes, some of them either with better parameters, or with larger distances than the previously known codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aly, S.A., Klappenecker, S., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53, 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, H.E., Geil, O.: Evaluation codes from order domain theory. Finite Fields Appl. 14, 92–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)

    Article  MATH  Google Scholar 

  6. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calderbank, A.R., Shor, P.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  10. Chen, B., Ling, S., Zhang, G.: Application of constancyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)

    Article  Google Scholar 

  11. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, 4th edn. Springer-Verlag (2015).

  12. Dieks, D.: Communication by EPR devices. Phys. Rev. A 92, 271 (1982)

    Google Scholar 

  13. Edel, Y.: Some good quantum twisted codes. http://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

  14. Ekert, A., Macchiavello, C.: Quantum error correction for communication. Phys. Rev. Lett. 77, 2585 (1996)

    Article  ADS  Google Scholar 

  15. Feng, K.: Quantum error correcting codes. In: Niederreiter, H. (ed) Coding Theory and Cryptology. pp. 91–142. Word Scientific. Singapore (2002)

  16. Feng, K., Ma, Z.: A finite Gilbert-Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galindo, C., Hernando, F.: Quantum codes from affine variety codes and their subfield subcodes. Des. Codes Crytogr. 76, 89–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galindo, C., Hernando, F., Ruano, D.: New quantum codes from evaluation and matrix-product codes. Finite Fields Appl. 36, 98–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from \(J\)-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process. 14, 3211–3231 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Galindo, C., Pérez-Casales, R.: On the evaluation codes given by simple \(\delta \)-sequences. AAECC 27, 59–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Galindo, C., Monserrat, F.: Delta-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Galindo, C., Monserrat, F.: Evaluation codes defined by finite families of plane valuations at infinity. Des. Codes Crytogr. 70, 189–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geil, O.: Evaluation codes from an affine variety code perspective. In: Martinez-Moro, E., Munuera, C., Ruano, D. (eds.) Advances in Algebraic Geometry Codes. Ser. Coding Theory Cryptol., vol. 5, pp. 153–180. World Scientific Publishing, Hackensack (2008)

    Chapter  Google Scholar 

  24. Geil, O.: Roots and coefficients of multivariate polynomials over finite fields. Finite Fields Appl. 23, 35–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geil, O., Høholdt, T.: On hyperbolic codes. Lect. Notes Comput. Sci. 2227, 159–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Geil, O., Matsumoto, R., Ruano, D.: Feng–Rao decoding of primary codes. Finite Fields Appl. 34, 36–44 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Geil, O., Thomsen, C.: Weighted Reed-Muller codes revisited. Des. Codes Cryptogr. 66, 195–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Grassl, M.: Bounds on the minimum distance of linear codes. http://www.codetables.de (2015). Accessed 15 Feb 2015

  30. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inform. 2, 757–775 (2004)

    Article  MATH  Google Scholar 

  31. Grassl, M., Rötteler, M.: Quantum BCH codes. In: Proc. X Int. Symp. Theor. elec. Eng. Germany (1999), pp. 207–212

  32. Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54, 5689–5704 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(q/2\). Quantum Inf. Process. 15, 2745–2758 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Høholdt, T.: On (or in) Dick Blahut’s footprint. In: Vardy, A (ed.) Codes, Curves and Signals. The Springer International Series in Engineering and Computer Science, vol. 485, pp. 3–7 (1998). http://link.springer.com/chapter/10.1007%2F978-1-4615-5121-8_1

  35. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56, 4735–4740 (2010)

    Article  MathSciNet  Google Scholar 

  36. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  38. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)

    Article  MathSciNet  Google Scholar 

  39. La Guardia, G.G., Palazzo, R.: Constructions of new families of nonbinary CSS codes. Discrete Math. 310, 2935–2945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Massey, J.L., Costello, D.J., Justensen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  41. Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for \(p^m\) state systems from classical error correcting codes. IEICE Trans. Fundam. E83–A, 1878–1883 (2000)

    Google Scholar 

  42. Matsumoto, R., Uyematsu, T.: Lower bound for the quantum capacity of a discrete memoryless quantum channel. J. Math. Phys 43, 4391–4403 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Saints, K., Heegard, C.: On hyperbolic cascaded Reed-Solomon codes. Lect. Notes Comput. Sci. 673, 291–303 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sarvepalli, P.K., Klappenecker, A.: Nonbinary quantum Reed-Muller codes. In: Proc. 2005 Int. Symp. Information Theory, pp. 1023–1027

  45. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proc. 35th ann. symp. found. comp. sc., IEEE Comp. Soc. Press (1994), pp. 124–134

  46. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  47. Steane, A.M.: Simple quantum error correcting codes. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Steane, A.M.: Enlargement of calderbank-shor-steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  50. Yu, S., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE Trans. Inf. Theory 59, 5179–5185 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hernando.

Additional information

Supported by the Spanish Ministry of Economy/FEDER: Grants MTM2012-36917-C03-03 and MTM2015-65764-C3-2-P, the University Jaume I: Grant PB1-1B2015-02, and the Danish Council for Independent Research: Grant DFF-4002-00367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galindo, C., Geil, O., Hernando, F. et al. On the distance of stabilizer quantum codes from J-affine variety codes. Quantum Inf Process 16, 111 (2017). https://doi.org/10.1007/s11128-017-1559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1559-1

Keywords

Navigation