Skip to main content
Log in

Generation and protection of steady-state quantum correlations due to quantum channels with memory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel \(\mu \). The stronger the memory coefficient of channel \( \mu \) is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of \(\mu \rightarrow 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lo Franco, R., Compagno, G.: Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 6, 20603 (2016)

    Article  ADS  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  6. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  7. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    Article  ADS  Google Scholar 

  8. Fanchini, F.F.R., Napolitano, D.J.: Protection of entanglement from sudden death using continuous dynamical decoupling. Phys. Rev. A 76, 062306 (2007)

    Article  ADS  Google Scholar 

  9. Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: Using squeezed field to preserve two-atom entanglement against spontaneous emissions. J. Phys. A: Math. Theor. 42, 035304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Apollaro, T.J.G., Cuccoli, A., Di Franco, C., Paternostro, M., Plastina, F., Verrucchi, P.: Manipulating and protecting entanglement by means of spin environments. New J. Phys. 12, 3615–3620 (2010)

    Article  Google Scholar 

  11. Lin, S.Y., Hu, B.L.: Entanglement creation between two causally-disconnected objects. Phys. Rev. D 81, 045019 (2010)

    Article  ADS  Google Scholar 

  12. Xu, H.S., Xu, Jb: Protecting quantum correlations of two qubits in independent non-Markovian environments by bang-bang pulses. J. Opt. Soci. Am. B 29, 2074–2079 (2012)

    Article  ADS  Google Scholar 

  13. Siomau, M., Kamli, Ali, A., Moiseev, S.A., Sanders, B.C.: Entanglement creation with negative index metamaterials. Phys. Rev. A 85, 050303 (2012)

    Article  ADS  Google Scholar 

  14. Creatore, C., Brierley, R.T., Phillips, R.T., Littlewood, P.B., Eastham, P.R.: Creation of entangled states in coupled quantum dots via adiabatic rapid passage. Phys. Rev. B 86, 5505–5511 (2012)

    Article  Google Scholar 

  15. Bellomo, B., Antezza, M.: Creation and protection of entanglement in systems out of thermal equilibrium. New J. Phys. 15, 113052 (2013)

    Article  ADS  Google Scholar 

  16. Cheng, J., Zhang, W.Z., Zhou, L., Zhang, W.P.: Preservation Macroscopic Entanglement of Optomechanical Systems innon-Markovian Environment. arXiv:1511.01267 [quant-ph] (2015)

  17. Guo, J.L., Wei, J.L.: Dynamics and protection of tripartite quantum correlations in a thermal bath. Ann. Phys. 354, 522–533 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  21. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  22. Orieux, A., Ferranti, G., D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of quantum entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  23. Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89, 012319 (2014)

    Article  ADS  Google Scholar 

  24. Blattmann, R., Krenner, H.J., Kohler, S., Hänggi, P.: Entanglement creation in a quantum dot-nanocavity system. Phys. Rev. A 89, 012327 (2014)

    Article  ADS  Google Scholar 

  25. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  26. Bellomo, B., Antezza, M.: Steady entanglement out of thermal equilibrium. Europhys. Lett. 104, 10006 (2013)

    Article  ADS  Google Scholar 

  27. Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)

    Article  ADS  Google Scholar 

  28. Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in markovian dissipative dynamics. Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  29. Li, Y., Zhou, J., Guo, H.: Effect of the dipole-dipole interaction for two atoms with different couplings in a non-Markovian environment. Phys. Rev. A 79, 012309 (2009)

    Article  ADS  Google Scholar 

  30. Ba An, N., Kim, J., Kim, K.: Entanglement dynamics of three interacting two-level atoms within a common structured environment. Phys. Rev. A 84, 022329 (2011)

    Article  ADS  Google Scholar 

  31. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  MATH  Google Scholar 

  32. González-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    Article  ADS  Google Scholar 

  33. Almutairi, K., Tanaś, R., Ficek, Z.: Generating two-photon entangled states in a driven two-atom system. Phys. Rev. A 84, 013831 (2011)

    Article  ADS  Google Scholar 

  34. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  35. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantumcomputation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  37. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verificationof decoherence-free subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  38. Xiao, X., Li, Y.L., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in non-Markovian regime. J. Phys. B At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  39. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  41. Man, Z.X., Xia, Y.J., Lo Franco, R.: Harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92, 012315 (2015)

    Article  ADS  Google Scholar 

  42. Maniscalco, S., Francisca, F., Zaffino, R., Gullo, N., Plastina, F.: Protecting entanglement via the quantum zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  44. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  45. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  46. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weakmeasurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  47. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  48. Yune, J., Hong, K.H., Lim, H.T., Lee, J.C., Kwon, O., Han, S.W., Kim, Y.S., Moon, S., Kim, Y.H.: Quantum discord protection from amplitude damping decoherence. Opt. Express 23, 26012–26022 (2015)

    Article  ADS  Google Scholar 

  49. Merkli, M., Breman, G.P., Borgonovi, F., Tsifrinovich, V.I.: Creation of two-particle entanglement in open macroscopic quantum systems. Adv. Math. Phys. 2012, 375182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Flores, M.M., Galapon, E.A.: Two qubit entanglement preservation through the addition of qubits. Ann. Phys. 354, 21–30 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  51. Macchiavello, C., Massimo Palma, G.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  52. DArrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Classical and quantum capacities of a fully correlated amplitude damping channel. Phys. Rev. A 88, 042337 (2013)

    Article  ADS  Google Scholar 

  53. DArrigo, A., Benenti, G., Falci, G., Macchiavello, C.: Information transmission over an amplitude damping channel with an arbitrary degree of memory. Phys. Rev. A 92, 062342 (2015)

    Article  ADS  Google Scholar 

  54. Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf. Process. 12, 83–95 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  56. D’Arrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    Article  Google Scholar 

  57. Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)

    Article  ADS  Google Scholar 

  58. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44, 015503 (2011)

    Article  ADS  Google Scholar 

  59. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  60. Yang, B.Y., Fang, M.F., Huang, J.: Relation between initial conditions and entanglement sudden death for two-qubit extended Werner-like states. Chin. Phys. B 22, 080303 (2013)

    Article  ADS  Google Scholar 

  61. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096), the Natural Science Foundation of Hunan Province (Grant No. 2016JJ2045), the Start-up Funds for Talent Introduction and Scientific Research of Changsha University 2015 (SF1504) and Scientific Research Project of Hunan Province Department of Education (16C0134 and 16C0469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-neng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yn., Fang, Mf., Wang, Gy. et al. Generation and protection of steady-state quantum correlations due to quantum channels with memory. Quantum Inf Process 15, 5129–5144 (2016). https://doi.org/10.1007/s11128-016-1442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1442-5

Keywords

Navigation