Skip to main content
Log in

Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings, 35th Annual Symposium on Foundations of Computer Science, vol. 124 (1994)

  3. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Kitaev, A.: Quantum measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026 (1995)

  5. Simon, D.: On the power of quantum computation. In: Proceedings, 35th Annual Symposium on Foundations of Computer Science, vol. 116 (1994)

  6. Jozsa, R.: Quantum algorithm and the Fourier transform. Proc. R. Soc. Lond.: Ser. A 454, 323 (1998)

  7. Scully, M., Zubairy, M.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A 65, 052324 (2002)

    Article  ADS  Google Scholar 

  8. Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. korean Phys. Soc. 53, 1787 (2008)

    Google Scholar 

  9. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    Article  ADS  Google Scholar 

  10. Wang, H.F., Zhang, S., Zhu, A.D., Yeon, K.H.: Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities. J. Opt. Soc. Am. B 29, 1078 (2012)

    Article  ADS  Google Scholar 

  11. Weinstein, Y., Pravia, M., Fortunato, E.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889 (2001)

    Article  ADS  Google Scholar 

  12. Zhang, J., Long, G., Deng, Z., Liu, W., Lu, Z.: Nuclear magnetic resonance implementation of a quantum clock synchronization algorithm. Phys. Rev. A 70, 062322 (2004)

    Article  ADS  Google Scholar 

  13. Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  14. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48 (2003)

    Article  ADS  Google Scholar 

  15. Fujiwara, S., Hasegawa, S.: General method for realizing the conditional phase-shift gate and a simulation of Grover’s algorithm in an ion-trap system. Phys. Rev. A 71, 012337 (2005)

    Article  ADS  Google Scholar 

  16. Niskanen, A., Vartiainen, J., Salomaa, M.: Optimal multiqubit operations for josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)

    Article  ADS  Google Scholar 

  17. Howell, J., Yeazell, J.: Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bhattacharya, N., van Linden van den Heuvell, H., Spreeuw, R.: Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett. 88, 137901 (2002)

    Article  ADS  Google Scholar 

  19. Mohseni, M., Lundeen, J., Resch, K., Steinberg, A.: Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003)

    Article  ADS  Google Scholar 

  20. Barak, R., Ben-aryeh, Y.: Quantum fast Fourier transform and quantum computation by linear optics. J. Opt. Soc. Am. B 24, 231 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Quantum Fourier transform of polarization photons mediated by weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 30, 2765 (2013)

    Article  ADS  Google Scholar 

  22. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., Loock, Pv, Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  23. Loock, P.V., Munro, W.J., Nemoto, K., Spiller, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.J.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)

  24. Lin, Q., He, B.: Addendum to “Single-photon logic gates using minimum resources”. Phys. Rev. A 82, 064303 (2010)

    Article  ADS  Google Scholar 

  25. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  26. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  27. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  28. Zhao, R.T., Guo, Q., Cheng, L.Y., Sun, L.L., Wang, H.F., Zhang, S.: Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity. Chin. Phys. B 22, 030313 (2013)

    Article  ADS  Google Scholar 

  29. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  30. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)

    Article  ADS  Google Scholar 

  31. Jin, G.S., Lin, Y., Wu, B.: Generating multiphoton Greenberger–Horne–Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)

    Article  ADS  Google Scholar 

  32. Zheng, C.H., Zhao, J., Shi, P., Li, W.D., Gu, Y.J.: Generation of three-photon polarization-entangled GHZ state via linear optics and weak cross-Kerr nonlinearity. Opt. Commun. 316, 26 (2014)

    Article  ADS  Google Scholar 

  33. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Simultaneous quantum transmission and teleportation of unknown photons using intra- and inter-particle entanglement controlled-not gates via cross-Kerr nonlinearity and P-homodyne measurements. Int. J. Theor. Phys. 54, 2261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, B., Ren, Y., Bergou, J.A.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)

    Article  ADS  Google Scholar 

  35. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009)

    Article  ADS  Google Scholar 

  36. Lin, Q., He, B., Bergou, J.A., Ren, Y.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)

    Article  ADS  Google Scholar 

  37. Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015)

    Article  ADS  Google Scholar 

  38. Zhu, M.Z., Ye, L.: Efficient distributed controlled Z gate without ancilla single-photons via cross-phase modulation. J. Opt. Soc. Am. B 31, 405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhu, M.Z., Ye, L.: Efficient entanglement purification for Greenberger–Horne–Zeilinger states via the distributed parity-check detector. Opt. Commun. 334, 51 (2015)

    Article  ADS  Google Scholar 

  40. Heo, J., Hong, C.H., Lee, D.H., Yang, H.J.: Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement. Chin. Phys. B 25, 020306 (2016)

    Article  Google Scholar 

  41. Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)

    Article  ADS  Google Scholar 

  42. Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312 (2011)

    Article  ADS  Google Scholar 

  43. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  44. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  45. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)

    Article  ADS  Google Scholar 

  46. Barrett, S.D., Milburn, G.J.: Quantum-information processing via a lossy bus. Phys. Rev. A 74, 060302 (2006)

    Article  ADS  Google Scholar 

  47. Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81, 062338 (2010)

    Article  ADS  Google Scholar 

  48. Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  49. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sanders, B.C., Milburn, G.J.: Complementarity in a quantum nondemolition measurement. Phys. Rev. A 39, 694 (1989)

    Article  ADS  Google Scholar 

  51. Sanders, B.C., Milburn, G.J.: Quantum limits to all-optical phase shifts in a Kerr nonlinear medium. Phys. Rev. A 45, 1919 (1992)

  52. Nagayama, K., Matsui, M., Kakui, M., Saitoh, T., Kawasaki, K., Takamizawa, H., Ooga, Y., Tsuchiya, I., Chigusa, Y.: Ultra low loss (0.1484 dB/km) pure silica core fiber. SEI Tech. Rev. 57, 3 (2004)

  53. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  54. Knill, E.: Bounds on the probability of success of postselected nonlinear sign shifts implemented with linear optics. Phys. Rev. A 68, 064303 (2003)

    Article  ADS  Google Scholar 

  55. Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical implementation of discrete quantum fourier transform with conventional photon detectors. Int. J. Quantum Inf. 9, 509 (2011)

    Article  MATH  Google Scholar 

  56. Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77, 013808 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A03004152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Kang, MS., Hong, CH. et al. Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf Process 15, 4955–4971 (2016). https://doi.org/10.1007/s11128-016-1439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1439-0

Keywords

Navigation