Skip to main content
Log in

Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, the genuine multipartite entanglement (GME) and quantum criticality property of spin systems with staggered Dzyaloshinskii–Moriya (DM) interaction are investigated by exploiting quantum renormalization group method. The results show that the GME can indicate quantum phase transitions at critical points after several iterations of the renormalization. Moreover, the DM interaction effectively restores the spoiled GME via creation of quantum fluctuations, while it also changes the critical points. At last, the nonanalytic and scaling behaviors of GME are analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group Addison. Wesley, New York (1992)

    Google Scholar 

  2. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  3. Vidal, J., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69, 022107 (2004)

    Article  ADS  Google Scholar 

  4. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  5. Lambert, N., Emary, C., Brandes, T.: Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  6. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Multipartite entanglement signature of quantum phase transitions. Phys. Rev. Lett. 97, 170401 (2006)

    Article  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  10. Amico, L., Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (2004)

    Article  ADS  Google Scholar 

  11. Hu, T.T., Xue, K., Sun, C.F.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process. 12, 3369–3381 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Symmetry-breaking effects upon bipartite and multipartite entanglement in the XY model. Phys. Rev. A 77, 032325 (2008)

    Article  ADS  Google Scholar 

  13. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  15. Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  16. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323 (2011)

    Article  ADS  Google Scholar 

  17. Sun, W.Y., Shi, J.D., Wang, D., Ye, L.: Exploring the global entanglement and quantum phase transition in the spin 1/2 XXZ model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 15, 245–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cheng, W.W., Liu, J.M.: Fidelity susceptibility approach to quantum phase transitions in the XY spin chain with multisite interactions. Phys. Rev. A 82, 012308 (2010)

    Article  ADS  Google Scholar 

  19. Justino, L., de Oliveira, T.R.: Bell inequalities and entanglement at quantum phase transitions in the XXZ model. Phys. Rev. A 85, 052128 (2012)

    Article  ADS  Google Scholar 

  20. Mandel, O., Greiner, M., Widera, A., Rom, T., Hansch, T.W., Bloch, I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  21. Roos, C.F., et al.: Control and measurement of three-qubit entangled states. Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  22. de Oliveira, T.R., Rigolin, G., de Oliveira, M.C., Miranda, E.: Genuine multipartite entanglement in quantum phase transitions. Phys. Rev. A 73, 010305(R) (2008)

    Article  Google Scholar 

  23. Carvahlo, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  24. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, M., Fei, S.M., Wang, Z.X.: A lower bound of concurrence for multipartite quantum states. J. Phys. A 42, 145303 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Langari, A.: Phase diagram of the antiferromagnetic XXZ model in the presence of an external magnetic field. Phys. Rev. B 58, 14467 (1998)

    Article  ADS  Google Scholar 

  27. Jafari, R., Langari, A.: Phase diagram of the one-dimensional \(S=1/2\) XXZ model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. Phys. Rev. B 76, 014412 (2007)

    Article  ADS  Google Scholar 

  28. Verstraete, F., et al.: Renormalization-group transformations on quantum states phys. Rev. Lett. 94, 140601 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2008)

    Article  ADS  Google Scholar 

  30. Liu, C.C., Shi, J.D., Ding, Z.Y., Ye, L.: Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model. Quantum Inf. Process. 15, 3209–3221 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Song, X.K., Wu, T., Ye, L.: Quantum correlations and quantum phase transition in the Ising model with Dzyaloshinskii-Moriya interaction. Phys. A 394, 386 (2014)

    Article  MathSciNet  Google Scholar 

  32. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grants Nos. 61275119, 11575001, and 11247256 and also by the fund of Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Appendix

Appendix

In this appendix, we will describe the renormalization of spin models by exploiting QRG method in detail. Followed, we will take the renormalization of one-dimensional Ising model as an example.

The Hamiltonian of Ising model with staggered DM interaction in the z direction on a periodic chain of N sites is

$$\begin{aligned} H=\frac{J}{4}\sum _i^N {\left[ {\sigma _i^z \sigma _{i+1}^z +D\left( {\sigma _i^x \sigma _{i+1}^y -\sigma _i^y \sigma _{i+1}^x } \right) } \right] } . \end{aligned}$$
(8)

By using the Kadanoff’s block method, it is necessary to divide the initial system Hamiltonian shown in Eq. (8) into two parts, namely,

$$\begin{aligned} H=H^\mathrm{B}+H^\mathrm{BB}, \end{aligned}$$
(9)

where \(H^\mathrm{B}\) is block Hamiltonian and \(H^\mathrm{BB}\) is interblock Hamiltonian. To get a renormalized form for the Hamiltonian, we will choose three sites as a block and the decomposition has been shown in Fig. 7. Note that it is a guarantee of self-similarity after each QRG step.

Fig. 7
figure 7

(Color line) Decomposition of Ising chain by using Kadanoff’s block approach. The Hamiltonian of the system is divided into two parts, i.e., block Hamiltonian \(H^\mathrm{B}\) and interblock Hamiltonian \(H^\mathrm{BB}\)

Then, the specific forms of Hamiltonian \(H^\mathrm{B}\) and \(H^\mathrm{BB}\) are

$$\begin{aligned}&H^\mathrm{B}=\frac{J}{4}\sum _L^{N/3} {\left[ {\sigma _{L,1}^z \sigma _{L,2}^z +\sigma _{L,2}^z \sigma _{L,3}^z +D\left( {\sigma _{L,1}^x \sigma _{L,2}^y -\sigma _{L,1}^y \sigma _{L,2}^x +\sigma _{L,2}^x \sigma _{L,3}^y -\sigma _{L,2}^y \sigma _{L,3}^x } \right) } \right] },\nonumber \\ \end{aligned}$$
(10)
$$\begin{aligned}&H^\mathrm{BB}=\frac{J}{4}\sum _{L=1}^{N/3} {\left[ {\sigma _{L,3}^z \sigma _{L+1,1}^z +D\left( {\sigma _{L,3}^x \sigma _{L+1,1}^y -\sigma _{L,3}^y \sigma _{L+1,1}^x } \right) } \right] } , \end{aligned}$$
(11)

where \(\sigma _{L,j}^\alpha \) refers to the \(\alpha \) component of the Pauli matrix at site j of the \(L\hbox {th}\) block Hamiltonian. The exact treatment of this Hamiltonian leads to two distinct eigenvalues which are doubly degenerate with \(\left| \uparrow \right\rangle \) and \(\left| \downarrow \right\rangle \) defined as the eigenstates of the Pauli matrix \(\sigma ^{z}\), both degenerate ground states used to construct the projection operator \(P_0 \) for the renormalized subspace are given by

$$\begin{aligned} \left| {\varphi _0 } \right\rangle =\frac{1}{\sqrt{2q\left( {1+q} \right) }}\left[ {2D\left| {\downarrow \uparrow \uparrow } \right\rangle +i\left( {1+q} \right) \left| {\uparrow \downarrow \uparrow } \right\rangle -2D\left| {\uparrow \uparrow \downarrow } \right\rangle } \right] , \end{aligned}$$
(12)
$$\begin{aligned} \left| {\varphi _0 ^{\prime }} \right\rangle =\frac{1}{\sqrt{2q\left( {1+q} \right) }}\left[ {2D\left| {\downarrow \downarrow \uparrow } \right\rangle +i\left( {1+q} \right) \left| {\downarrow \uparrow \downarrow } \right\rangle -2D\left| {\uparrow \downarrow \downarrow } \right\rangle } \right] , \end{aligned}$$
(13)

where \(q=\sqrt{1+8D^{2}}\). The energy corresponding to the ground states is

$$\begin{aligned} E_0 =-\frac{J}{4}\left( {1+q} \right) . \end{aligned}$$
(14)

To eliminate the higher energy of the system and retain the lower, the projection operator \(P_0 \) is composed of its lowest-energy eigenstates. Then, the effective Hamiltonian \(H^\mathrm{eff}\) and original Hamiltonian H have in common the low-lying spectrum, which can be given by the projection operator, i.e., \(H^\mathrm{eff}=P_0^\dagger HP_0 \) wherein \(P_0^\dagger \) is the Hermitian operator of \(P_0 \). In the effective Hamiltonian, we consider only the first-order correction in the perturbation theory, which is

$$\begin{aligned} H^\mathrm{eff}=H_0^\mathrm{eff} +H_1^\mathrm{eff} =P_0^\dagger H^\mathrm{B}P_0 +P_0^\dagger H^\mathrm{BB}P_0 . \end{aligned}$$
(15)

At the same time, the projection operator \(P_0 \) can be put in a factorized form

$$\begin{aligned} P_0 =\prod _{i=1}^{N/3} {P_0^L } , \end{aligned}$$
(16)

where the specific form of \(P_0^L \) is

$$\begin{aligned} P_0^L =\left| \Uparrow \right\rangle _L \left\langle {\varphi _0 } \right| +\left| \Downarrow \right\rangle _L \left\langle {\varphi _0 } \right| , \end{aligned}$$
(17)

where \(\left| \Uparrow \right\rangle _L \) and \(\left| \Downarrow \right\rangle _L \) are the renamed states of the \(L\hbox {th}\) block to represent the effective site degrees of freedom. Then, the Pauli matrices in the effective Hilbert space have the following transformations:

$$\begin{aligned} P_0^L \sigma _{L,1}^x P_0^L= & {} \frac{2D}{q}{\sigma }_L^{'y} ,\quad P_0^L \sigma _{L,2}^x P_0^L =\frac{4D^{2}}{q\left( {q+1} \right) }{\sigma }_L^{'x} ,\quad P_0^L \sigma _{L,3}^x P_0^L =-\frac{2D}{q}{\sigma }_L^{'y} ,\nonumber \\ P_0^L \sigma _{L,1}^y P_0^L= & {} -\frac{2D}{q}{\sigma }_L^{'x} ,\quad P_0^L \sigma _{L,2}^y P_0^L =\frac{4D^{2}}{q\left( {q+1} \right) }{\sigma }_L^{'y} ,\quad P_0^L \sigma _{L,3}^y P_0^L =\frac{2D}{q}{\sigma }_L^{'x} ,\nonumber \\ P_0^L \sigma _{L,1}^z P_0^L= & {} \frac{1+q}{2q}{\sigma }_L^{'z} ,\quad P_0^L \sigma _{L,2}^z P_0^L =-\frac{1}{q}{\sigma }_L^{'z} ,\quad P_0^L \sigma _{L,3}^z P_0^L =\frac{1+q}{2q}{\sigma }_L^{'z} , \end{aligned}$$
(18)

Then, we can obtain the effective Hamiltonian of renormalized Ising model, which is similar to the initial one with the sign of DM interaction changed.

Similarly, to renormalize the one-dimensional anisotropic XXZ model, we still choose three sites as a block. The block Hamiltonian has two degenerate ground states as follows

$$\begin{aligned} \left| {\phi _0 } \right\rangle= & {} \frac{1}{\sqrt{2q\left( {q+\Delta } \right) \left( {1+D^{2}} \right) }}\left\{ 2\left( {D^{2}+1} \right) \left| {\downarrow \downarrow \uparrow } \right\rangle -\left( {1-iD} \right) \left( {q+\Delta } \right) \left| {\downarrow \uparrow \downarrow } \right\rangle \right. \nonumber \\&\left. -2\left[ {2iD+\left( {D^{2}-1} \right) } \right] \left| {\uparrow \downarrow \downarrow } \right\rangle \right\} \end{aligned}$$
(19)
$$\begin{aligned} \left| {\phi _0^{\prime } } \right\rangle= & {} \frac{1}{\sqrt{2q\left( {q+\Delta } \right) \left( {1+D^{2}} \right) }}\left\{ 2\left( {D^{2}+1} \right) \left| {\downarrow \uparrow \uparrow } \right\rangle -\left( {1-iD} \right) \left( {q+\Delta } \right) \left| {\uparrow \downarrow \uparrow } \right\rangle \right. \nonumber \\&\left. -2\left[ {2iD+\left( {D^{2}-1} \right) } \right] \left| {\uparrow \uparrow \downarrow } \right\rangle \right\} \end{aligned}$$
(20)

with \(q=\sqrt{\Delta ^{2}+8\left( {D^{2}+1} \right) }\). Using the similar processing implemented in the Ising model, we can also achieve the renormalization of XXZ model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Jd., Wang, D. & Ye, L. Genuine multipartite entanglement as the indicator of quantum phase transition in spin systems. Quantum Inf Process 15, 4629–4640 (2016). https://doi.org/10.1007/s11128-016-1422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1422-9

Keywords

Navigation