Skip to main content
Log in

Steady and optimal entropy squeezing of a two-level atom with quantum-jump-based feedback and classical driving in a dissipative cavity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the entropy squeezing of a two-level atom coupled to a dissipative cavity under two different controls: In the first case, quantum-jump-based feedback is alone applied, whereas in the second case we consider the combined effect of quantum-jump-based feedback and classical driving, in which we provide a scheme to generate and protect steady and optimal entropy squeezing of the two-level atom. The results show that the entropy squeezing of atomic polarization components greatly depends on the control of quantum-jump-based feedback and classical driving. Under the condition of designing proper quantum-jump-based feedback parameters, the entropy squeezing can be generated and protected. Furthermore, when both quantum-jump-based feedback and classical driving are simultaneously applied, steady and optimal entropy squeezing of the two-level atom can be obtained even though there is initially no entropy squeezing, which is explained by making use of the steady-state solution of the atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  2. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  3. Kitagawa, M., Ueda, M.: Squeezed spin state. Phys. Rev. A 47, 5138–5143 (1993)

    Article  ADS  Google Scholar 

  4. Wineland, D.J., Bollinger, J.J., Itano, W.M.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)

    Article  ADS  Google Scholar 

  5. Sorensen, A., Molmer, K.: Spin–spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 (1999)

    Article  ADS  Google Scholar 

  6. Sorensen, J.L., Hald, J., Polzik, E.: Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487–3490 (1998)

    Article  ADS  Google Scholar 

  7. Zheng, Q., Yao, Y., Li, Y.: Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Phys. Rev. A 93, 013848 (2016)

    Article  ADS  Google Scholar 

  8. Fang, M.F., Zhou, P., Swain, S.: Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043–1053 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Wiseman, H.M., Milburn, G.J.: Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70, 548–551 (1993)

    Article  ADS  Google Scholar 

  10. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133–2150 (1994)

    Article  ADS  Google Scholar 

  11. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Katz, G., Ratner, M.A., Kosloff, R.: Decoherence control by tracking a Hamiltonian reference molecule. Phys. Rev. Lett. 98, 203006 (2007)

    Article  ADS  Google Scholar 

  13. Ganesan, N., Tarn, T.J.: Decoherence control in open quantum system via classical feedback. Phys. Rev. A 75, 032323 (2007)

    Article  ADS  Google Scholar 

  14. Zhang, J., Li, C., Wu, R., Tarn, T., Liu, X.: Maximal suppression of decoherence in Markovian quantum systems. J. Phys. A 38, 6587–6601 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    Article  ADS  Google Scholar 

  16. Carvalho, A.R.R., Hope, J.J.: Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A 76, 010301(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Li, J.G., Zou, J., Shao, B., Cai, J.F.: Steady atomic entanglement with different quantum feedbacks. Phys. Rev. A 77, 012339 (2008)

    Article  ADS  Google Scholar 

  18. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    Article  ADS  Google Scholar 

  19. Sun, H.Y., Shu, P.L., Li, C., Yi, X.X.: Feedback control on geometric phase in dissipative two-level systems. Phys. Rev. A 79, 022119 (2009)

    Article  ADS  Google Scholar 

  20. Wang, L.C., Huang, X.L., Yi, X.X.: Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A 78, 052112 (2008)

    Article  ADS  Google Scholar 

  21. Li, Y., Luo, B., Guo, H.: Entanglement and quantum discord dynamics of two atoms under practical feedback control. Phys. Rev. A 84, 012316 (2011)

    Article  ADS  Google Scholar 

  22. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  23. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three atom singlet state via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  24. Sun, W.M., Su, S.L., Jin, Z., Liang, Y., Zhu, A.D., Wang, H.F., Zhang, S.: Dissipative preparation of three-atom entanglement state via quantum feedback control. J. Opt. Soc. Am. B 32, 1873–1880 (2015)

    Article  ADS  Google Scholar 

  25. Chen, L., wang, H.F., Zhang, S.: Entanglement dynamics of three atoms under quantum-jump-based control. J. Opt. Soc. Am. B 30, 475–481 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hou, S.C., Huang, X.L., Yi, X.X.: Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems. Phys. Rev. A 82, 012336 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Fang, MF. Steady and optimal entropy squeezing of a two-level atom with quantum-jump-based feedback and classical driving in a dissipative cavity. Quantum Inf Process 15, 4175–4187 (2016). https://doi.org/10.1007/s11128-016-1407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1407-8

Keywords

Navigation