Skip to main content
Log in

Concurrence as a measure of Markovianity: concurrence versus distinguishability and divisibility

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We examine the measure of Markovianity based on entanglement through two typical dynamical models in qubit systems and compare it with the measures of Markovianity based on state distinguishability and dynamical divisibility. We find that divisible dynamics always leads to the monotonic decrease in concurrence, but distinguishability does not constrain its behavior in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  2. Kubota, Y., Nobusada, K.: Applicability of site-basis time-evolution equation for thermalization of exciton states in a quantum dot array. J. Phys. Soc. Jpn. 78(1–7), 114603 (2009)

    Article  ADS  Google Scholar 

  3. Ji, Y.H., Hu, J.J.: Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment. Chin. Phys. B 19(1–6), 060304 (2010)

    ADS  Google Scholar 

  4. Shao, J.: Decoupling quantum dissipation interaction via stochastic fields. J. Chem. Phys. 120, 5053–5056 (2004)

    Article  ADS  Google Scholar 

  5. Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013)

    Article  Google Scholar 

  6. Chin, A.W., Datta, A., Caruso, F., Huelga, S.F., Plenio, M.B.: Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys 12(1–16), 065002 (2010)

    Article  ADS  Google Scholar 

  7. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109(1–5), 233601 (2012)

    Article  ADS  Google Scholar 

  8. Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4(1–7), 5720 (2014)

    Google Scholar 

  9. Laine, E.M., Breuer, H.P., Piilo, J.: Nonlocal memory effects allow perfect teleportation with mixed states. Sci. Rep. 4(1–5), 4620 (2014)

    ADS  Google Scholar 

  10. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable quantum key distribution in non-Markovian channels. Phys. Rev. 83(1–6), 042321 (2011)

    Article  ADS  Google Scholar 

  11. Tang, N., Fan, Z.L., Zeng, H.S.: Improving the quality of noisy spatial quantum channels. Quant. Inf. Comput. 15, 0568–0581 (2015)

    MathSciNet  Google Scholar 

  12. Schmidt, R., Negretti, A., Ankerhold, J., Stockburger, J.T.: Optimal control of open quantum systems: cooperative effects of driving and dissipation. Phys. Rev. 107(1–5), 130404 (2011)

    Google Scholar 

  13. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78(R1–4), 060302 (2008)

    Article  ADS  Google Scholar 

  14. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87(R1–5), 010103 (2013)

    Article  ADS  Google Scholar 

  15. Addis, C., Brebner, G., Haikka, P., Maniscalco, S.: Coherence trapping and information backflow in dephasing qubits. Phys. Rev. A 89(1–4), 024101 (2004)

    ADS  Google Scholar 

  16. Zeng, H.S., Zheng, Y.P., Tang, N., Wang, G.Y.: Correlation quantum beats induced by non-Markovian effect. Quantum Inf. Process. 12, 1637–1650 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Laine, E.M., Breuer, H.P., Piilo, J., Li, C.F., Guo, G.C.: Nonlocal memory effects in the dynamics of open quantum systems. Phys. Rev. Lett. 108(1–5), 210402 (2012)

    Article  ADS  Google Scholar 

  18. Xu, J.S., Li, C.F., Gong, M., Zou, X.B., Shi, C.H., Chen, G., Guo, G.C.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104(1–4), 100502 (2010)

    Article  ADS  Google Scholar 

  19. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)

    Article  Google Scholar 

  20. Tang, J.S., Li, C.F., Li, Y.L., Zou, X.B., Gou, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system–environment interaction. Europhys. Lett. 97(1–5), 10002 (2012)

    Article  ADS  Google Scholar 

  21. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101(1–4), 150402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105(1–4), 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chruściński, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112(1–5), 120404 (2014)

    ADS  Google Scholar 

  24. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(1–4), 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. 86(1–4), 044101 (2012)

    Article  ADS  Google Scholar 

  26. Fanchini, F.F., Karpat, G., Cakmak, B., Castelano, L.K., Aguilar, G.H., Jiménez Farías, O., Walborn, S.P., Souto Ribeiro, P.H., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112(1–5), 210402 (2014)

    Article  ADS  Google Scholar 

  27. Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Cakmak, B., Aguilar, G.H., Walborn, S.P., Souto Ribeiro, P.H.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90(1–10), 052118 (2014)

    Article  ADS  Google Scholar 

  28. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82(1–4), 042103 (2010)

    Article  ADS  Google Scholar 

  29. Haseli, S., Salimi, S., Khorashad, A.S.: A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf. Process. 14, 3581–3594 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Chruściński, D., Kossakowski, A., Rivas, Á.: Measures of non-Markovianity: divisibility versus backflow of information. Phys. Rev. A 83(1–6), 052128 (2011)

  31. Zeng, H.S., Tang, N., Zheng, Y.P., Xu, T.T.: Non-Markovian dynamics for an open two-level system without rotating wave approximation: indivisibility versus backflow of information. Eur. Phys. J. D 66(1–10), 255 (2012)

    Article  ADS  Google Scholar 

  32. Zeng, H.S., Tang, N., Zheng, Y.P., Wang, G.Y.: Equivalence of the measures of non-Markovianity for open two-level systems. Phys. Rev. A 84(1–6), 032118 (2011)

    Article  ADS  Google Scholar 

  33. Jiang, M., Luo, S.: Comparing quantum Markovianities: distinguishability versus correlations. Phys. Rev. A 88(1–4), 034101 (2013)

  34. Chruściński, D., Wudarski, F.A.: Non-Markovian random unitary qubit dynamics. Phys. Lett. A 377, 1425–1429 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Chruściński, D., Wudarski, F.A.: Non-Markovianity degree for random unitary evolution. Phys. Rev. A 91(1–5), 012104 (2015)

    ADS  MathSciNet  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  37. Wang, G.Y., Tang, N., Liu, Y., Zeng, H.S.: Rotation of Bloch sphere induced by Lamb shift in open two-level systems. Chin. Phys. B 24(1–6), 050302 (2015)

    Article  ADS  Google Scholar 

  38. Rivas, Á., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(1–26), 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11275064, 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003), and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZY., Ren, YK. & Zeng, HS. Concurrence as a measure of Markovianity: concurrence versus distinguishability and divisibility. Quantum Inf Process 15, 3043–3053 (2016). https://doi.org/10.1007/s11128-016-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1306-z

Keywords

Navigation