Skip to main content
Log in

Efficient quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient quantum secret sharing scheme is proposed, in which the dealer generates some single particles and then uses the operations of quantum-controlled-not and Hadamard gate to encode a determinate secret into these particles. The participants get their shadows by performing the single-particle measurements on their particles, and even the dealer cannot know their shadows. Compared to the existing schemes, our scheme is more practical within the present technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51, 2291–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  Google Scholar 

  5. Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55–68 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  7. Liu, J., Liu, Y.M., Zhang, Z.J.: Generalized multiparty quantum single-qutrit state sharing. Int. J. Theor. Phys. 47, 2353–2362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yan, F.L., Gao, T., Li, Y.C.: Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. Phys. Lett. 25, 1187–1190 (2008)

    Article  ADS  Google Scholar 

  10. Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  11. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  12. Chiawei, T., Tzonelih, H.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460–464 (2012)

    Article  Google Scholar 

  13. Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)

    Article  MathSciNet  Google Scholar 

  14. Shi, R.H., Lv, G.L., Wang, Y., Huang, D.Z., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52, 539–548 (2013)

    Article  MATH  Google Scholar 

  15. Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Sun, Y., Xu, S.W., Chen, X.B., Niu, X.X., Yang, Y.X.: Expansible quantum secret sharing network. Quantum Inf. Process. 12, 2877–2888 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  18. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)

    Article  ADS  Google Scholar 

  19. Sarvepalli, P.K., Klappenecker, A.: Sharing classical secrets with Calderbank–Shor–Steane codes. Phys. Rev. A 80, 022321 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)

    Article  ADS  Google Scholar 

  21. Wang, M.M., Chen, X.B., Yang, Y.X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429–443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process. 12, 331–344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)

    Article  ADS  MATH  Google Scholar 

  26. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis of a new circular quantum secret sharing protocol for remote agents. Quantum Inf. Process. 12, 1173–1183 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)

    Article  ADS  Google Scholar 

  30. Bennett, C.H.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  31. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  33. Steane, A.: The ion trap quantum information processor. Appl. Phys. B Lasers Opt. 64, 623–643 (1997)

    Article  ADS  Google Scholar 

  34. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)

    Article  ADS  Google Scholar 

  35. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Loss, D., Divincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  38. Pazy, E., Biolatti, E., Calarco, T., Damico, I., Zanardi, P., Rossi, F., Zoller, P.: Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots. Europhys. Lett. 62, 175–181 (2003)

    Article  ADS  Google Scholar 

  39. Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  MATH  Google Scholar 

  40. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawang Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Dai, Y. Efficient quantum secret sharing. Quantum Inf Process 15, 2091–2100 (2016). https://doi.org/10.1007/s11128-016-1251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1251-x

Keywords

Navigation