Quantum Information Processing

, Volume 15, Issue 1, pp 85–101

The staggered quantum walk model

  • R. Portugal
  • R. A. M. Santos
  • T. D. Fernandes
  • D. N. Gonçalves
Article

DOI: 10.1007/s11128-015-1149-z

Cite this article as:
Portugal, R., Santos, R.A.M., Fernandes, T.D. et al. Quantum Inf Process (2016) 15: 85. doi:10.1007/s11128-015-1149-z

Abstract

There are at least three models of discrete-time quantum walks (QWs) on graphs currently under active development. In this work, we focus on the equivalence of two of them, known as Szegedy’s and staggered QWs. We give a formal definition of the staggered model and discuss generalized versions for searching marked vertices. Using this formal definition, we prove that any instance of Szegedy’s model is equivalent to an instance of the staggered model. On the other hand, we show that there are instances of the staggered model that cannot be cast into Szegedy’s framework. Our analysis also works when there are marked vertices. We show that Szegedy’s spatial search algorithms can be converted into search algorithms in staggered QWs. We take advantage of the similarity of those models to define the quantum hitting time in the staggered model and to describe a method to calculate the eigenvalues and eigenvectors of the evolution operator of staggered QWs.

Keywords

Quantum walks Staggered model Coinless model  Szegedy  Hitting time 

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • R. Portugal
    • 1
  • R. A. M. Santos
    • 1
  • T. D. Fernandes
    • 1
    • 2
  • D. N. Gonçalves
    • 3
  1. 1.National Laboratory of Scientific Computing - LNCCPetrópolisBrazil
  2. 2.Universidade Federal do Espírito Santo - UFESAlegreBrazil
  3. 3.Centro de Educação Tecnológica Celso Suckow da Fonseca - CEFETPetrópolisBrazil

Personalised recommendations