Skip to main content
Log in

Network coding for quantum cooperative multicast

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Cooperative communication is starting to attract substantial research attention in quantum information theory. However, given a specific network, it is still unknown whether quantum cooperative communication can be successfully performed. In this paper, we investigate network coding for quantum cooperative multicast (QCM) over the classic butterfly network. A very reasonable definition of QCM is first introduced. It not only perfectly focuses on the basic idea of quantum cooperative communication, but also wonderfully reflects the characteristic of classical multicast over a specific network structure. Next, we design QCM protocol for two-level systems and generalize the protocol into d-dimensional Hilbert space. It is shown that our protocols have significant advantages in terms of resource cost and compatibility with classical multicast. Besides, the success probability, which only depends on the coefficients of the initial quantum states, is carefully analyzed. In particular if the source nodes choose the quantum equatorial states, success probability can reach 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Splitstream, S.A.: High-bandwidth multicast in a cooperative environment. In: Proceedings of the ACM SOSP (2003)

  2. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In: INFOCOM 2005. 24th Annual joint conference of the IEEE computer and communications societies. Proceedings IEEE: IEEE (2005)

  3. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7, 72–93 (2005)

    Article  Google Scholar 

  4. Chen, C.Y., Hsueh, C.C., Hsu, C.C.: Two-to-one quantum teleportation protocol and its application. Chaos Solitons Fractals 36, 1399–1404 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  6. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2009)

    Article  ADS  Google Scholar 

  7. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  ADS  Google Scholar 

  8. Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via epr-type pairs. Opt. Commun. 284, 2617–2621 (2011)

    Article  ADS  Google Scholar 

  9. Murao, M., Vedral, V.: Remote information concentration using a bound entangled state. Phys. Rev. Lett. 86, 352–355 (2001)

    Article  ADS  Google Scholar 

  10. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, S., Cai, R.W.N.: Linear network coding. IEEE Trans. Inf. Theory 49, 371–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koetter, R., Medard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. 11, 782–795 (2003)

    Article  Google Scholar 

  13. Xie, S., Wang, Y.: Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel. Pers. Commun. 78(1), 231–246 (2014)

    Article  Google Scholar 

  14. Guo, P., Wang, J., Geng, X.H., Kim, C.S., Kim, J.-U.: A variable threshold-value authentication architecture for wireless mesh networks. J. Internet Technol. 15(6), 929–936 (2014)

    Google Scholar 

  15. Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding for general graphs. quant-ph Arxiv preprint, 0611039 (2006)

  16. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Quantum network coding. Lect. Notes Comput. Sci. 4393, 610–621 (2007)

    Article  MathSciNet  Google Scholar 

  17. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  Google Scholar 

  18. Ma, S.Y., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Probabilistic quantum network coding of m-qudit states over the butterfly network. Opt. Commun. 283, 497–501 (2010)

    Article  ADS  Google Scholar 

  19. Acin, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256–259 (2007)

    Article  Google Scholar 

  20. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: General scheme for perfect quantum network coding with free classical communication. Lect. Notes Comput. Sci. 5555, 622–633 (2009)

    Article  Google Scholar 

  21. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Perfect quantum network communication protocol based on classical network coding. In: ISIT. 2010, IEEE: Austin, Texas, USA pp. 2686–2690

  22. Kobayashi, H., Le Gall, F., Nishimura, H., Rotteler, M.: Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of the 2011 IEEE international symposium on information theory proceedings (ISIT) pp. 109–113 (2011)

  23. Jain, A., Franceschetti, M., Meyer, D.A.: On quantum network coding. J. Math. Phys. 52, 032201 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  24. Dougherty, R., Zeger, K.: Nonreversibility and equivalent constructions of multiple-unicast networks. IEEE Trans. Inf. Theory 52, 5067–5077 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Z., Li, B.: Network coding: the case of multiple unicast sessions. In: Proceedings of allerton (2004)

  26. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76, 040301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Chen, X.B., Zhang, N., Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a w state. Opt. Commun. 281, 2331–2335 (2008)

    Article  ADS  Google Scholar 

  29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Shi, Y., Soljanin, E.: On multicast in quantum networks. In: Proceedings of the 40th annual conference on information sciences and systems (2006)

  31. SaiToh, A., Rahimi, R., Nakahara, M.: Economical (k, m)-threshold controlled quantum teleportation. Phys. Rev. A 79, 062313 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Yu, C., Song, H., Wang, Y.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  33. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by NSFC (Grant Nos. 61272514, 61170272, 61121061, 61411146001), NCET (Grant No. NCET-13-0681), the National Development Foundation for Cryptological Research (Grant No. MMJJ201401012), the Fok Ying Tung Education Foundation (Grant No. 131067), the NSERC (RT733206) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Xu or Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Chen, XB., Li, J. et al. Network coding for quantum cooperative multicast. Quantum Inf Process 14, 4297–4322 (2015). https://doi.org/10.1007/s11128-015-1098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1098-6

Keywords

Navigation