Skip to main content
Log in

Precision localization of single atom via spontaneous emission in three dimensions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new scheme for high-efficiency three-dimensional (3D) atom localization in a three-level atomic system via spontaneous emission. Owing to the space-dependent atom–field interaction, the position probability distribution of the atom can be directly determined by measuring the spontaneous emission. It is found that, by properly varying the parameters of the system, the probability of finding the atom at a particular position can be almost 100 %. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications to spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Phillips, W.D.: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 73, 721–741 (1998)

    Article  ADS  Google Scholar 

  2. Johnson, K.S., Thywissen, J.H., Dekker, W.H., Berggren, K.K., Chu, A.P., Younkin, R., Prentiss, M.: Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998)

    Article  ADS  Google Scholar 

  3. Collins, G.P.: Experimenters produce new Bose–Einstein condensate (s) and possible puzzles for theorists. Phys. Today 49, 18–21 (1996)

    Google Scholar 

  4. Gorshkov, A.V., Jiang, L., Greiner, M., Zoller, P., Lukin, M.D.: Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100, 093005 (2008)

    Article  ADS  Google Scholar 

  5. Thomas, J.E.: Quantum theory of atomic position measurement using optical fields. Phys. Rev. A 42, 5652–6666 (1990)

    Article  ADS  Google Scholar 

  6. Gardner, J.R., Marable, M.L., Welch, G.R., Thomas, J.E.: Suboptical wavelength position measurement of moving atoms using optical fields. Phys. Rev. Lett. 70, 3404–3407 (1993)

    Article  ADS  Google Scholar 

  7. Storey, P., Collett, M., Walls, D.: Atomic-position resolution by quadrature-field measurement. Phys. Rev. A 47, 405–418 (1993)

    Article  ADS  Google Scholar 

  8. Xiao, M., Li, Y.Q., Jin, S.Z., Gea-Banacloche, J.: Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666–669 (1995)

    Article  ADS  Google Scholar 

  9. Wu, Y., Yang, X.X.: Highly efficient four-wave mixing in double-Lambda system in ultraslow propagation regime. Phys. Rev. A 70, 053818 (2004)

    Article  ADS  Google Scholar 

  10. Wu, Y., Deng, L.: Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  11. Wu, Y., Yang, X.X.: Electromagnetically induced transparency in V-, \(\Lambda \)-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  12. Wu, Y., Yang, X.X.: Carrier-envelope phase-dependent atomic coherence and quantum beats. Phys. Rev. A 76, 013832 (2007)

    Article  ADS  Google Scholar 

  13. Paspalakis, E., Knight, P.L.: Localizing an atom via quantum interference. Phys. Rev. A 63, 065802 (2001)

    Article  ADS  Google Scholar 

  14. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Atom localization via resonance fluorescence. Phys. Rev. A 61, 063806 (2000)

    Article  ADS  Google Scholar 

  15. Sahrai, M., Tajalli, H., Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72, 013820 (2005)

    Article  ADS  Google Scholar 

  16. Kapale, K.T., Zubairy, M.S.: Subwavelength atom localization via amplitude and phase control of the absorption spectrum, II. Phys. Rev. A 73, 023813 (2006)

    Article  ADS  Google Scholar 

  17. Agarwal, G.S., Kapale, K.T.: Subwavelength atom localization via coherent population trapping. J. Phys. B 39, 3437–3446 (2006)

    Article  ADS  Google Scholar 

  18. Nha, H., Lee, J.H., Chang, J.S., An, K.: Atomic-position localization via dual measurement. Phys. Rev. A 65, 033827 (2002)

    Article  ADS  Google Scholar 

  19. Liu, C.P., Gong, S.Q., Cheng, D.C., Fan, X.J., Xu, Z.Z.: Atom localization via interference of dark resonances. Phys. Rev. A 73, 025801 (2006)

    Article  ADS  Google Scholar 

  20. Ghafoor, F., Qamar, S., Zubairy, M.S.: Atom localization via phase and amplitude control of the driving field. Phys. Rev. A 65, 043819 (2002)

    Article  ADS  Google Scholar 

  21. Xu, J., Hu, X.M.: Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields. Phys. Rev. A 76, 013830 (2007)

    Article  ADS  Google Scholar 

  22. Qamar, S., Mehmood, A., Qarmar, S.: Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79, 033848 (2009)

    Article  ADS  Google Scholar 

  23. Herkommer, A.M., Schleich, W.P., Zubairy, M.S.: Autler–Townes microscopy on a single atom. J. Mod. Opt. 44, 2507–2513 (1997)

    Article  ADS  Google Scholar 

  24. Qamar, S., Zhu, S.Y., Zubairy, M.S.: Precision localization of single atom using Autler–Townes microscopy. Opt. Commun. 176(4), 409–416 (2000)

    Article  ADS  Google Scholar 

  25. Proite, N.A., Simmons, Z.J., Yavuz, D.D.: Observation of atomic localization using electromagnetically induced transparency. Phys. Rev. A 83, 041803 (2011)

    Article  ADS  Google Scholar 

  26. Ivanov, V., Rozhdestvensky, Y.: Two-dimensional atom localization in a four-level tripod system in laser field. Phys. Rev. A 81, 033809 (2010)

    Article  ADS  Google Scholar 

  27. Ding, C.L., Li, J.H., Zhan, Z.M., Yang, X.X.: Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83, 063834 (2011)

    Article  ADS  Google Scholar 

  28. Ding, C.L., Li, J.H., Yang, X.X., Zhang, D., Xiong, H.: Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84, 043840 (2011)

    Article  ADS  Google Scholar 

  29. Li, J.H., Yu, R., Liu, M., Ding, C.L., Yang, X.X.: Efficient two-dimensional atom localization via phase-sensitive absorption spectrum in a radio-frequency-driven four-level atomic system. Phys. Lett. A 375, 3978–3985 (2011)

    Article  ADS  Google Scholar 

  30. Wan, R.G., Kou, J., Jiang, L., Jiang, Y., Gao, J.Y.: Two-dimensional atom localization via interacting double-dark resonances. J. Opt. Soc. Am. B 28, 622–628 (2011)

    Article  ADS  Google Scholar 

  31. Wan, R.G., Zhang, T.Y., Kou, J.: Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys. Rev. A 87, 043816 (2013)

    Article  ADS  Google Scholar 

  32. Rahmatullah, Qamar, S.: Two-dimensional atom localization via probe-absorption spectrum. Phys. Rev. A 88, 013846 (2013)

    Article  ADS  Google Scholar 

  33. Rahmatullah, Qamar, S.: Two-dimensional atom localization via Raman-driven coherence. Phys. Lett. A 378, 684–690 (2014)

    Article  ADS  Google Scholar 

  34. Jin, L.L., Sun, H., Niu, Y.P., Jin, S.Q., Gong, S.Q.: Two-dimension atom nano-lithograph via atom localization. J. Mod. Opt. 56, 805–810 (2009)

    Article  ADS  Google Scholar 

  35. Qi, Y., Zhou, F., Huang, T., Niu, Y., Gong, S.: Three-dimensional atom localization in a five-level M-type atomic system. J. Mod. Opt. 59, 1092 (2012)

    Article  ADS  Google Scholar 

  36. Ivanov, V.S., Rozhdestvensky, Y.V., Suominen, K.: Three-dimensional atom localization by laser fields in a four-level tripod system. Phys. Rev. A 90, 063802 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the referee of the paper for his/her fruitful advice and comment, which significantly improved the paper. This work is supported by the National Natural Science Foundation of China (Grant No. 11205001) and Doctoral Scientific Research Fund of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, B. Precision localization of single atom via spontaneous emission in three dimensions. Quantum Inf Process 14, 4067–4076 (2015). https://doi.org/10.1007/s11128-015-1094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1094-x

Keywords

Navigation