Skip to main content
Log in

Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

After presenting an exact analytical solution of time-dependent Schrödinger equation, we study the dynamics of entanglement for a two-qubit Ising model. One of the spin qubits is driven by a static magnetic field applied in the direction of the Ising interaction, while the other is coupled with a rotating magnetic field. We also investigate how the entanglement can be controlled by changing the external parameters. Because of the important role of maximally entangled Bell states in quantum communication, we focus on the generalized Bell states as the initial states of the system. It is found that the entanglement evolution is independent of the initial Bell states. Moreover, we can preserve the initial maximal entanglement by adjusting the angular frequency of the rotating field or controlling the exchange coupling between spin qubits. Besides, our calculation shows that the entanglement dynamics is unaffected by the static magnetic field imposed in the direction of the Ising interaction. This is an interesting result, because, as we shall show below, this driving field can be used to control and manipulate the noncyclic geometric phase without affecting the system entanglement. Besides, the nonadiabatic and noncyclic geometric phase for evolved states of the present system are calculated and described in detail. In order to identify the unusable states for quantum communication, completely deviated from the initial maximally entangled states, we also study the fidelity between the initial Bell state and the evolved state of the system. Interestingly, we find that these unusable states can be detected by geometric quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. Samuel, J., Bhandari, B.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. I. General formalism. Ann. Phys. 228, 205–268 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Jain, S.R., Pati, A.K.: Adiabatic geometric phases and response functions. Phys. Rev. Lett. 80, 650–653 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Sjöqvist, E., Hedström, M.: Noncyclic geometric phase, coherent states, and the time-dependent variational principle; Application to coupled electron-nuclear dynamics. Phys. Rev. A 56, 3417–3424 (1997)

    Article  ADS  Google Scholar 

  7. de Polavieja, G.G.: Noncyclic geometric phase shift for quantal revivals. Phys. Rev. Lett. 81, 1–5 (1998)

    Article  ADS  Google Scholar 

  8. Amniat-Talab, M., Rangani Jahromi, H.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski-Moriya interaction in magnetic field. Quantum Inf. Process 12, 1185–1199 (2013)

    Article  ADS  MATH  Google Scholar 

  9. Rangani Jahromi, H., Amniat-Talab, M.: Geometric phase, entanglement, and quantum fisher information near the saturation point. Ann. Phys. 355, 299–312 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Solinas, P., Zanardi, P., Zanghi, N., Rossi, F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B 67, 121307 (2003)

    Article  ADS  Google Scholar 

  11. Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000). (London)

    Article  ADS  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  13. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    Article  ADS  Google Scholar 

  14. Nagasawa, F., Takagi, J., Kunihashi, Y., Kohda, M., Nitta, J.: Experimental demonstration of spin geometric phase: radius dependence of time-reversal Aharonov-Casher oscillations. Phys. Rev. Lett. 108, 086801 (2012)

    Article  ADS  Google Scholar 

  15. Nagasawa, F., Frustaglia, D., Saarikoski, H., Richter, K., Nitta, J.: Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4, 2526–2533 (2013)

    Article  ADS  Google Scholar 

  16. Richter, K.: Viewpoint: The ABC of Aharonov effects. Physics 5, 22 (2012). http://physics.aps.org/articles/v5/22

  17. Sjöqvist, E.: Geometric phase for entangled spin pairs. Phys. Rev. A 62, 022109 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  18. Amniat-Talab, M., Rangani Jahromi, H.: Relation between Berry phases and entanglement besides convergence of levels for two entangled spin-1/2 particles in magnetic fields. Eur. Phys. J. D 66(8), 1–11 (2012)

    Google Scholar 

  19. Amniat-Talab, M., Rangani Jahromi, H.: Design of geometric phase gates and controlling the dynamic phase for a two-qubit Ising model in magnetic fields. Proc. R. Soc. A 469, 20120743 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Nakahara, M., Ohmi, T.: Quantum Computing. Taylor and Francis Group, London (2008)

    Book  MATH  Google Scholar 

  23. Tong, D.M., Kwek, L.C., Oh, C.H.: Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field. J. Phys. A 36, 1149–1157 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Ge, X.-Y., Wadati, M.: Geometric phase of entangled spin pairs in a magnetic field. Phys. Rev. A 72, 052101 (2005)

    Article  ADS  Google Scholar 

  25. Li, Xin: Interacting spin pairs in rotational magnetic fields and geometric phase. Phys. Lett. A 372, 4980–4984 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Niu, C.W., Xu, G.F.L., Liu, L., Kang, L., Tong, D.M.: Separable states and geometric phases of an interacting two-spin system. Phys. Rev. A 81, 012116 (2010)

    Article  ADS  Google Scholar 

  27. Altintas, F., Eryigit, R.: Control and manipulation of entanglement between two coupled qubits by fast pulses. Quantum Inf. Process 12, 2251–2268 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Jaksch, D., et al.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

    Article  ADS  Google Scholar 

  29. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Laflamme R. et al.: Introduction to NMR quantum information processing. http://arxiv.org/abs/quant-ph/0207172

  31. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  32. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  33. Shim, Y.P., Oh, S., Hu, X., Friesen, M.: Controllable anisotropic exchange coupling between spin qubits in quantum dots. Phys. Rev. Lett. 106, 180503 (2011)

    Article  ADS  Google Scholar 

  34. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 175–179 (1984)

    MathSciNet  MATH  Google Scholar 

  35. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Nakahara, M., Rahimi, R., SaiToh, A.: Mathematical Aspects of Quantum Computing. World Scientific, Singapore (2007)

    Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the financial support of the MSRT of Iran and Urmia University (93/S/008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amniat-Talab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangani Jahromi, H., Amniat-Talab, M. Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model. Quantum Inf Process 14, 3739–3755 (2015). https://doi.org/10.1007/s11128-015-1088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1088-8

Keywords

Navigation