Skip to main content
Log in

Two-way deterministic quantum key distribution against passive detector side channel attacks in the forward line

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the four-state two-way deterministic quantum key distribution (DQKD) protocol, Bob prepares a qubit randomly in one of four states and sends it to Alice. Alice encodes her key bit on the arrival qubit and returns it to Bob who measures the redux qubit to decode Alice’s key bit in a deterministic manner, without basis reconciliation. The unconditional security of the final key of this protocol has been proven in the ideal-device settings. Recently, it has been proven that two-way DQKD protocol is immune to all detector side channel attacks in the backward line A-to-B. In this paper, we study the security of two-way DQKD against passive detector side channel attacks in the forward line B-to-A. In a passive detector side channel attack, the eavesdropper Eve does not disturb quantum state of travel photon but utilizes the efficiency mismatch of two single-photon detectors to estimate the value of key bits, such as the time-shift attack. We prove that two-way DQKD is immune against all passive detector side channel attacks in the forward line B-to-A, although such attacks are efficient on BB84 protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In fact, Ref. [27] was initially proposed as a quantum secure direct communication protocol with a reasonable N qubits in a batch. Recently, it was modified as a DQKD protocol to be applied to noisy quantum channels [33].

References

  1. Bennet, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 10–12 (1984)

  2. Mayer, D.: Unconditional security in quantum cryptography. J. ACM 48, 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Sciences 283, 2050–2056 (1999)

    Article  Google Scholar 

  4. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  5. Gottesman, D., Lo, H.-K., Lüthenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  7. Bennett, C., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  8. Felix, S., Gisin, N., Stefanov, A., Zbinden, H.: Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses. J. Mod. Opt. 48, 2009–2021 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  MATH  Google Scholar 

  10. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  11. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  12. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  13. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  14. Qi, B., Fung, C.-H.F., Lo, H.-K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Security proof of quantum key distribution with detection efficiency mismatch. Quantum Inf. Comput. 7, 073–082 (2007)

    MathSciNet  Google Scholar 

  15. Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  16. Fung, C.-H.F., Tamaki, K., Qi, B., Lo, H.-K., Ma, X.: Security proof of quantum key distribution with detection efficiency mismatch. Quantum Inf. Comput. 9, 0131–0165 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Makarvo, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  18. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686–689 (2010)

    Article  ADS  Google Scholar 

  19. Li, H.-W., Wang, S., Huang, J.-Z., Chen, W., Yin, Z.-Q., Li, F.-Y., Zhou, Z., Liu, D., Zhang, Y., Guo, G.-C., Han, Z.-F.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)

    Article  ADS  Google Scholar 

  20. Tang, Y.-L., Yin, H.-L., Ma, X., Fung, C.-H.F., Liu, Y., Yong, H.-L., Chen, T.-Y., Peng, C.-Z., Chen, Z.-B., Pan, J.-W.: Source attack of decoy-state quantum key distribution using phase information. Phys. Rev. A 88, 022308 (2013)

    Article  ADS  Google Scholar 

  21. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  22. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  23. Wójcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  24. Cai, Q-y: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  25. Cai, Q-y, Li, B.-W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  26. Cai, Q-y, Li, B.-W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)

  27. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  28. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  29. Lu, H.: Upper bound on key generation rate of quantum key distribution with two-way or two-step quantum channels. Opt. Commun. 284, 2254–2256 (2011)

    Article  ADS  Google Scholar 

  30. Cai, Q-y: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Deng, F.-G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  32. Abdul Khir, M.F., Mohd Zain, M.N., Bahari, I., Suryadi, S.S.: Experimental two way quantum key distribution with decoy state. Opt. Commun. 285, 842–845 (2012)

    Article  ADS  Google Scholar 

  33. Lu, H., Fung, C.-H.F., Ma, X., Cai, Q-y: Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A 84, 042344 (2011)

    Article  ADS  Google Scholar 

  34. Fung, C.-H.F., Ma, X., Chau, H.F., Cai, Q-y: Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol. Phys. Rev. A 85, 032308 (2012)

    Article  ADS  Google Scholar 

  35. Beaudry, N.J., Lucamarini, M., Mancini, S., Renner, R.: Security of two-way quantum key distribution. Phys. Rev. A 88, 062302 (2013)

    Article  ADS  Google Scholar 

  36. Lu, H., Fung, C.-H.F., Cai, Q-y: Two-way deterministic quantum key distribution against detector-side-channel attacks. Phys. Rev. A 88, 044302 (2013)

    Article  ADS  Google Scholar 

  37. Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) Second Theory of Cryptography Conference, TCC 2005 Vol. 3378 of LNCS, pp. 407–425. Springer, New York (2005)

    Google Scholar 

Download references

Acknowledgments

I thank Qing-yu Cai for the fruitful discussions. Financial support from NSFC under Grant Nos. 11204072 and 61471356 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H. Two-way deterministic quantum key distribution against passive detector side channel attacks in the forward line. Quantum Inf Process 14, 3827–3834 (2015). https://doi.org/10.1007/s11128-015-1083-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1083-0

Keywords

Navigation