Skip to main content
Log in

Quantum information as a measure of multipartite correlation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The mutual information has been successfully used as a measure of correlation strength between quantum systems, especially for bipartite systems. Here, we examine the use of this measure for multipartite quantum systems. For system of qubits, we find that the difference between ‘classical’ and ‘quantum’ regimes of correlation strength amounts to just 1 bit of information, at most. We show that the information content of a correlation can be expanded into correlations between pairwise components and demonstrate that in terms of this information-based measure of correlation the GHZ states are the only states that simultaneously optimise these pairwise correlations for systems of qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamming, R.W.: Coding and Information Theory. Prentice-Hall, New Jersey (1980)

    MATH  Google Scholar 

  2. Zurek, W.H.: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  3. Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing and quantum correlations. Phys. Rev. A 44, 535 (1991)

    Article  ADS  Google Scholar 

  6. Barnett, S.M., Phoenix, S.J.D.: Information-theoretic limits to quantum cryptography. Phys. Rev. A 48, R5 (1993)

    Article  ADS  Google Scholar 

  7. Barnett, S.M., Phoenix, S.J.D.: Bell’s inequality and the Schmidt decomposition. Phys. Lett. A 167, 233 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105(19), 190502 (2010)

    Article  ADS  Google Scholar 

  11. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  12. Phoenix, S.J.D., Khan, F.S.: Partitions of Correlated Quantum Systems (submitted)

  13. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  14. Gisin, N., Peres, A.: Maximal violation of Bell’s inequality for arbitrarily large spin. Phys. Lett. A 162, 15 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. CUP, Cambridge (2003)

    MATH  Google Scholar 

  16. Barnett, S.M.: private communication

  17. Phoenix, S.J.D., Knight, P.L.: Fluctuations and entropy in models of optical resonance. Ann. Phys. (NY) 186, 381 (1988)

    Article  ADS  MATH  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bussieres, F., Clausen, C., Tiranov, A., Korzh, B., Verma, V.B., Nam, S.W., Marsili, F., Ferrier, A., Goldner, P., Herrmann, H., Silberhorn, C., Sohler, W., Afzelius, M., Gisin, N.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. http://arxiv.org/abs/1401.6958 (2014)

  20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  22. Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6(6), 462 (2010)

    Article  Google Scholar 

  23. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. http://arxiv.org/pdf/1308.5935v2 (2014)

  24. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Meyer, D.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Iqbal, A., Weigert, S.: Quantum correlation games. J. Phys. A 37, 5873–5885 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Hill, C.D., Flitney, A.P., Menicucci, N.C.: A competitive game whose maximal Nash-equilibrium payoff requires quantum resources for its achievement. Phys. Lett. A 374, 3619 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Shimamura, J., Özdemir, S., Morikoshi, F., Imoto, N.: Quantum and classical correlations between players in game theory. Int. J. Quantum Inf. 2, 79–89 (2004)

    Article  MATH  Google Scholar 

  29. Phoenix, S.J.D., Khan, F.S.: The role of correlation in quantum and classical games. Fluct. Noise Lett. 12, 1350011 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank S.M. Barnett, F.S. Khan and N. Lūtkenhaus, for valuable and enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. D. Phoenix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoenix, S.J.D. Quantum information as a measure of multipartite correlation. Quantum Inf Process 14, 3723–3738 (2015). https://doi.org/10.1007/s11128-015-1070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1070-5

Keywords

Navigation