Skip to main content
Log in

Efficient bit sifting scheme of post-processing in quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Tech. J. 27(4), 379 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tanaka, A., Fujiwara, M., Yoshino, Ki, Takahashi, S., Nambu, Y., Tomita, A., Miki, S., Yamashita, T., Wang, Z., Sasaki, M., et al.: High-speed quantum key distribution system for 1-Mbps real-time key generation. Quantum Electron IEEE J 48(4), 542 (2012)

    Article  ADS  Google Scholar 

  3. Dixon, A., Yuan, Z., Dynes, J., Sharpe, A., Shields, A.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96(16), 161102 (2010)

    Article  ADS  Google Scholar 

  4. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, New York (1984)

  6. Mayers, D.: Advances in CryptologyCRYPTO96, pp. 343–357. Springer, New York (1996)

    Google Scholar 

  7. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351 (2001)

    Article  MathSciNet  Google Scholar 

  8. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: Theory of Cryptography, pp. 386–406. Springer, New York (2005)

    Chapter  Google Scholar 

  9. Walenta, N., Burg, A., Caselunghe, D., Constantin, J., Gisin, N., Guinnard, O., Houlmann, R., Junod, P., Korzh, B., Kulesza, N., et al.: A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing. N. J. Phys. 16(1), 013047 (2014)

    Article  Google Scholar 

  10. Brassard, G., Salvail, L.: Advances in CryptologyEUROCRYPT93, pp. 410–423. Springer, New York (1994)

  11. Buttler, W., Lamoreaux, S., Torgerson, J., Nickel, G., Donahue, C., Peterson, C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67(5), 052303 (2003)

    Article  ADS  Google Scholar 

  12. Traisilanun, W., Sripimanwat, K., Sangaroon, O.: Secret key reconciliation using BCH code in quantum key distribution. A A 3(2), 1 (2007)

    Google Scholar 

  13. Martinez-Mateo, J., Elkouss, D., Martin, V.: Blind reconciliation. Quantum Inf. Comput. 12(9&10), 0791 (2012)

    Google Scholar 

  14. Jouguet, P., Kunz-Jacques, S.: High performance error correction for quantum key distribution using polar codes. Quantum Inf. Comput. 14(3–4), 329 (2014)

    MathSciNet  Google Scholar 

  15. den Boer, B.: A simple and key-economical unconditional authentication scheme. J. Comput. Secur. 2(1), 65 (1993)

    MathSciNet  Google Scholar 

  16. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: Advances in CryptologyCrypto93, pp. 331–342. Springer, New York (1994)

    Google Scholar 

  17. Krawczyk, H.: Advances in CryptologyCRYPTO94, pp. 129–139. Springer, New York (1994)

    Google Scholar 

  18. Abidin, A., Larsson, J.Å.: Research in Cryptology, pp. 99–108. Springer, New York (2012)

    Chapter  Google Scholar 

  19. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography, vol. 797. Springer, New York (2010)

    MATH  Google Scholar 

  20. Li, Q., Le, D., Rao, M.: In: Instrumentation, measurement, computer, communication and control (IMCCC), 2012 Second International Conference on, IEEE, pp. 272–275. (2012)

  21. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  22. Mink, A.: In: Optics East 2007, International Society for Optics and Photonics, pp. 678,014–678,014 (2007)

  23. Johnsonbaugh, R., Pfaffenberger, W.E.: Foundations of Mathematical Analysis. Dover Publications, New York (2012)

    Google Scholar 

  24. Xu, B.: The practical security of quantum key distribution system. Ph.D. thesis, Peking University (2012)

  25. Stucki, D., Walenta, N., Vannel, F., Thew, R.T., Gisin, N., Zbinden, H., Gray, S., Towery, C., Ten, S.: High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. N. J. Phys. 11(7), 075003 (2009)

    Article  Google Scholar 

  26. Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008 (2012)

    Article  ADS  Google Scholar 

  27. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., Yamashita, T., Wang, Z., Tanaka, A., et al.: Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19(11), 10387 (2011)

    Article  ADS  Google Scholar 

  28. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New Jersey (2006)

    MATH  Google Scholar 

  29. Zhang, H.F., Wang, J., Cui, K., Luo, C.L., Lin, S.Z., Zhou, L., Liang, H., Chen, T.Y., Chen, K., Pan, J.W.: A real-time QKD system based on FPGA. J. Lightw. Technol. 30(20), 3226 (2012)

    Article  ADS  Google Scholar 

  30. Stinson, D.R.: Universal hashing and authentication codes. Des. Codes Cryptogr. 4(3), 369 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wegman, M.N., Carter, J.L.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Portmann, C.: arXiv preprint arXiv:1202.1229 (2012)

  34. Dixon, A., Yuan, Z., Dynes, J., Sharpe, A., Shields, A.: Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt. Express 16(23), 18790 (2008)

    Article  ADS  Google Scholar 

  35. Stucki, D., Brunner, N., Gisin, N., Scarani, V., Zbinden, H.: Fast and simple one-way quantum key distribution. Appl. Phys. Lett. 87(19), 194108 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Z. Li from the Peking university for the helpful discussions of the count rate of QKD system and the COW protocol and thank Q. Zhao from the Harbin Institute of Technology for the discussions of the inference of some formulas. This work is supported by the National Natural Science Foundation of China (Grant Numbers: 61471141, 61361166006, 61301099) and the Fundamental Research Funds for the Central Universities (Grant Numbers: HIT. KISTP. 201416, HIT. KISTP. 201414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiamu Niu.

Appendices

Appendix A: Proof of Lemma 1

Proof

For convenience, we denote \(p=1-q\), then \(p \in \left[ 0.9, 1\right) \) and \(q=1-p\). The \(\overline{L}\left( z\right) \) in (14) can be rewritten as

$$\begin{aligned} \overline{L}\left( z \right) = \frac{{\left( {1 - p} \right) z}}{{1 - {p^{{2^z} - 1}}}}, \end{aligned}$$

and the partial derivative of the expected codelength \(\overline{L}\) with respect to the variable z is given by

$$\begin{aligned} \frac{{\partial \overline{L}}}{{\partial z}} = \frac{{(1 - p)p}}{{{{\left( {p - {p^{{2^z}}}} \right) }^2}}}\left( {p - {p^{{2^z}}} + z{2^z}{p^{{2^z}}}\ln 2\ln p} \right) . \end{aligned}$$
(19)

Due to \(p \in [0.9,1)\),

$$\begin{aligned} \frac{{(1 - p)p}}{{{{\left( {p - {p^{{2^z}}}} \right) }^2}}} > 0. \end{aligned}$$

We only need to focus on the sign of

$$\begin{aligned} r\left( z \right) = p - {p^{{2^z}}} + z{2^z}{p^{{2^z}}}\ln 2\ln p. \end{aligned}$$
(20)

The partial derivative of \(r\left( z \right) \) with respect to the variable z can be evaluated as

$$\begin{aligned} \frac{{\partial r}}{{\partial z}} = z{2^z}{p^{{2^z}}}{\ln ^2}2\ln p\left( {1 + {2^z}\ln p} \right) . \end{aligned}$$
(21)

Due to \(z{2^z}{p^{{2^z}}}{\ln ^2}2\ln p < 0\), the sign of \(\frac{{\partial r}}{{\partial z}}\) is determined by the sign of the expression \(1 + {2^z}\ln p\). Let \(1 + {2^z}\ln p > 0\); then

$$\begin{aligned} z < - {\log _2}\left( { - \ln p} \right) \buildrel \varDelta \over = {z_m}. \end{aligned}$$

So

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial r}}{{\partial z}} < 0,}&{}{{{\mathrm{when}}}\;1 \le z{\mathrm{}} < {\mathrm{}}{z_m}}\\ {\frac{{\partial r}}{{\partial z}} = 0,}&{}{{\mathrm{when}}\;z{\mathrm{}} = {\mathrm{}}{z_m}}\\ {\frac{{\partial r}}{{\partial z}} > 0,}&{}{{\mathrm{when}}\;z{\mathrm{}} > {\mathrm{}}{z_m}} \end{array}} \right. . \end{aligned}$$
(22)

Therefore function \(r\left( z \right) \) is monotonically decreasing in the domain \(z \in \left[ 1, z_m\right) \) and monotonically increasing in domain \(\left( z_m, +\infty \right) \) and reaches the global minimum value at the point \(z = z_m\), which is

$$\begin{aligned} r\left( {{z_m}} \right) = \frac{{ - 1 + ep + \ln \left( { - \ln p} \right) }}{e}. \end{aligned}$$
(23)

Since

$$\begin{aligned} \frac{{\partial r\left( {{z_m}} \right) }}{{\partial p}} = {\mathrm{}}1 + \frac{1}{{ep\ln p}} < -2.87, \mathrm{}\forall p \in [0.9,1), \end{aligned}$$

function \(r\left( z_m\right) \) is monotonically decreasing with respect to the variable p and comes to the maximum value at \(p=0.9\), which is about \(-0.30\). So

$$\begin{aligned} r\left( {{z_m}} \right) < 0, \forall p \in [0.9,1). \end{aligned}$$
(24)

In addition, as z approaches \( + \infty \), the limit of \(r\left( z \right) \) is

$$\begin{aligned} \mathop {\lim }\limits _{\mathrm{z} \rightarrow + \infty } r\left( z \right) = p, \forall p \in [0.9,1). \end{aligned}$$
(25)

Upon (24), (25) and the continuity of \(r\left( z \right) \) in the domain \(z \in \left[ {z_m, + \infty } \right) \), it can be inferred that there exists at least one \({z_0} \in \left( { z_m, + \infty } \right) \) satisfying that \(r\left( {{z_0}} \right) = 0\) according to the intermediate value theorem [23]. Besides, since \(r\left( z \right) \) is monotonically increasing function in the range \(z \in \left[ {z_m, + \infty } \right) \), the root of \(r(z)=0\) is unique, and

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {r\left( z \right) < 0,}&{}{{\mathrm{when}}\;z \in \left[ {{z_m},{z_0}} \right) }\\ {r\left( z \right) = 0,}&{}{\mathrm{when}\; z = z_0}\\ {r\left( z \right) > 0,}&{}{\mathrm{when}\;z \in \left( {{z_0}, + \infty } \right) } \end{array}} \right. \end{aligned}$$
(26)

Since

$$\begin{aligned} {z_m} \ge {\left. { - {{\log }_2}\left( { - \ln p} \right) } \right| _{p = 0.9}} > 3.24, \end{aligned}$$

we have to discuss the sign of \(r\left( z \right) \) in the domain \(z \in \left[ {1, z_m } \right) \). Now our concern is the sign of

$$\begin{aligned} r\left( 1 \right) = p - {p^2} + 2{p^2}\ln 2\ln p. \end{aligned}$$
(27)

The partial derivative of \(r\left( 1 \right) \) with respect to the variable p is given by

$$\begin{aligned} \frac{{\partial r\left( 1 \right) }}{{\partial p}}= 1 - 2p + 2p\ln 2 + 4p\ln 2\ln p, \end{aligned}$$
(28)

and the second partial derivative of \(r\left( 1 \right) \) with respect to the variable p is given by

$$\begin{aligned} \frac{{{\partial ^2}r\left( 1 \right) }}{{\partial {p^2}}} = - 2 + 6\ln 2 + 4\ln 2\ln p. \end{aligned}$$
(29)

Obviously in the domain \(p \in [0.9,1)\), the function \(\frac{{{\partial ^2}r\left( 1 \right) }}{{\partial {p^2}}}\) is monotonically increasing with respect to the variable p and reaches the minimum value at \(p = 0.9\), which is about 1.87. Thus the function \(\frac{{\partial r\left( 1 \right) }}{{\partial p}}\) with respect to the variable p is also monotonically increasing and also reaches the minimum value at \(p = 0.9\), which is about 0.18. Therefore \(r\left( 1 \right) \) is a monotonically increasing function with respect to the variable p and reaches the supremum 0 at \(p = 1\), so

$$\begin{aligned} r\left( 1 \right) < 0, \forall p \in [0.9,1). \end{aligned}$$
(30)

Since \(r\left( z \right) \) is a monotonically decreasing function in the range \(z \in \left[ 1, z_m\right) \), we have

$$\begin{aligned} r\left( z \right) \le r\left( 1 \right) < 0, \forall z \in \left[ 1, z_m\right) . \end{aligned}$$
(31)

Combining (26) and (31), we have

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {r\left( z \right) < 0,}&{}{\mathrm{when}\;z \in \left[ {{1},{z_0}} \right) }\\ {r\left( z \right) = 0,}&{}{\mathrm{when}\; z = z_0}\\ {r\left( z \right) > 0,}&{}{\mathrm{when}\;z \in \left( {{z_0}, + \infty } \right) } \end{array}} \right. . \end{aligned}$$
(32)

Since the sign of \(\frac{{\partial \overline{L}}}{{\partial z}}\) is the same as the sign of \(r\left( z \right) \),

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial \overline{L}}}{{\partial z}} < 0,}&{}{\mathrm{when}\;z \in \left[ {1,{z_0}} \right) }\\ {\frac{{\partial \overline{L}}}{{\partial z}} = 0,}&{}{\mathrm{when}\;z = z_0}\\ {\frac{{\partial \overline{L}}}{{\partial z}} > 0,}&{}{\mathrm{when}\;z \in \left( {{z_0}, + \infty } \right) } \end{array}} \right. \end{aligned}$$

where \({z_0} \in \left( { z_m, + \infty } \right) \), i.e.,

$$\begin{aligned} {z_0} \in \left( { - {{\log }_2}\left( { - \ln \left( 1-q\right) } \right) , + \infty } \right) . \end{aligned}$$

On the other hand, since \(k \in \mathbb {N}^+\), the minimum of \(\overline{L}(k)\) is reached at \(k=\left\lfloor {{z_0}} \right\rfloor \) or \(k=\left\lceil {{z_0}} \right\rceil \), i.e., the optimal solution of (13) is reached at \(k=\left\lfloor {{z_0}} \right\rfloor \) or \(k=\left\lceil {{z_0}} \right\rceil \). \(\square \)

Appendix B: Proof of Theorem 1

Proof

For briefness, we denote \(y = - {\log _2}\left( { - \ln \left( {{{1 - q}}} \right) } \right) \). Then Lemma 1 indicates that

$$\begin{aligned} {z_0} > y,\forall q \in \left[ {{{10}^{ - 15}},0.1} \right] . \end{aligned}$$
(33)

At the same time, the value of the partial deviation \(\frac{{\partial \overline{L}}}{{\partial z}}\) at \(z = y + 3\) is given by

$$\begin{aligned} \frac{{\partial \overline{L}}}{{\partial z}}{|_{z = y + 3}} = \frac{{{e^8}(1 - q)q}}{{{{\left( {1 - {e^8}\left( {1 - q} \right) } \right) }^2}}}A\left( q \right) , \end{aligned}$$
(34)

where

$$\begin{aligned} A\left( q \right) = - 1 - 24\ln 2 + {e^8}(1 - q) + 8\ln \left( { - \ln \left( {1 - q} \right) } \right) . \end{aligned}$$

Since

$$\begin{aligned} \frac{{{e^8}(1 - q)q}}{{{{\left( {1 - {e^8}\left( {1 - q} \right) } \right) }^2}}} > 0, \forall q \in \left[ 10^{-15}, 0.1\right] \end{aligned}$$
(35)

the sign of (34) is same as the sign of \(A\left( q \right) \). The partial derivative of \(A\left( q \right) \) can be evaluated as

$$\begin{aligned} \frac{{\partial A}}{{\partial q}} = - {e^8} - \frac{8}{{(1 - q)\ln \left( {1 - q} \right) }}, \end{aligned}$$

which is a monotonically decreasing function with respect to the variable q and

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial A}}{{\partial q}} > 7.20 \times {{10}^{15}},}&{}{when\;q = {{10}^{ - 15}}}\\ {\frac{{\partial A}}{{\partial q}} < - 2.80 \times {{10}^3},}&{}{when\;q = 0.1} \end{array}} \right. \end{aligned}$$

So the function \(A\left( q \right) \) is firstly monotonically increasing and then monotonically decreasing in the range \(q \in \left[ 10^{-15}, 0.1\right] \). The minimum must occur at the point \(q=10^{-15}\) or \(q=0.1\), where \({A\left( {{{10}^{ - 15}}} \right) \approx 2687.85}\) and \({A\left( {0.1} \right) \approx {\mathrm{2647}}{\mathrm{.22}}}\), so

$$\begin{aligned} A\left( q \right) > 0,\forall q \in \left[ 10^{-15}, 0.1\right] . \end{aligned}$$
(36)

Hence, combining (34), (35) and (36),

$$\begin{aligned} \frac{{\partial \overline{L}}}{{\partial z}}{|_{z = y + 3}} > 0,\forall q \in \left[ 10^{-15}, 0.1\right] . \end{aligned}$$
(37)

Making use of (37) and the Lemma 1, it can be concluded that

$$\begin{aligned} {z_0} < y + 3,\forall q \in \left[ {{{10}^{ - 15}},0.1} \right] . \end{aligned}$$
(38)

Combining (33) and (38), we have

$$\begin{aligned} y<{z_0} < y + 3, \forall q \in \left[ {{{10}^{ - 15}},0.1} \right] . \end{aligned}$$

On the other hand, Lemma 1 shows that the optimal solution of (13) is reached at \(k=\left\lfloor {{z_0}} \right\rfloor \) or \(k=\left\lceil {{z_0}} \right\rceil \), so the optimal parameter \(k_\mathrm{opt}\) of (13) is one of the following five values, i.e., \(\left\lfloor y \right\rfloor , \left\lfloor y \right\rfloor + 1,\left\lfloor y \right\rfloor + 2,\left\lfloor y \right\rfloor + 3,\left\lceil y \right\rceil + 3\). \(\square \)

Appendix C: Proof of Theorem 2

Proof

For brevity, let \(\left\{ {a \ldots b} \right\} \buildrel \varDelta \over = \left[ {a,b} \right] \cap \mathbb {N}.\)

(a) When \(n_\mathrm{max} \ge 2^{k_\mathrm{opt}}\), the optimal code alphabet size

$$\begin{aligned} {n_\mathrm{opt}} = {2^{{k_\mathrm{opt}}}} \le {n_\mathrm{max }}, \end{aligned}$$

which is reachable in the domain \(\left\{ {2 \ldots {n_\mathrm{max }}} \right\} \). So the optimal solution of (17) is reached at \(n=2^{k_\mathrm{opt}}\) in this case.

(b) When \(n_\mathrm{max} < 2^{k_\mathrm{opt}}\), the optimal code alphabet size

$$\begin{aligned} {n_\mathrm{opt}} = {2^{{k_\mathrm{opt}}}} > {n_\mathrm{max }}, \end{aligned}$$

which cannot be reachable in the domain \(\left\{ {2 \ldots {n_\mathrm{max }}} \right\} \). In the case, the domain \(\left\{ {2 \ldots {n_\mathrm{max }}} \right\} \) is divided into \(\left\{ {2 \ldots {2^{{k_\mathrm{max }}}}} \right\} \) and \(\left\{ {{2^{{k_\mathrm{max }}}} + 1 \ldots {n_\mathrm{max }}} \right\} \), where \({k_\mathrm{max }} = \left\lfloor {{{\log }_2}{n_\mathrm{max }}} \right\rfloor \).

(b.1) Since

$$\begin{aligned} \left\{ {2 \ldots {2^{{k_\mathrm{max }}}}} \right\} = \bigcup \limits _{k = 1}^{{k_\mathrm{max }}} {\left\{ {{2^{k - 1}}+1 \ldots {2^k}} \right\} } \end{aligned}$$

and the minimum of \(\overline{L}\left( n\right) \) in the range \({\left\{ {{2^{k - 1}}+1 \ldots {2^k}} \right\} }\) occurs at the point \(2^k\) according to (12), \(1 \le k \le k_\mathrm{max}\), we just need to consider the minimum of \(\overline{L}\left( k\right) \) in the range \(\left\{ {1\ldots {k_\mathrm{max }}} \right\} \). According to Lemma 1, it can be inferred that \(k_\mathrm{opt} \le \left\lceil {{z_0}} \right\rceil \), then

$$\begin{aligned} {k_\mathrm{max }} = \left\lfloor {{{\log }_2}{n_\mathrm{max }}} \right\rfloor \le {k_\mathrm{opt}} - 1 \le \left\lceil {{z_0}} \right\rceil - 1 < {z_0}. \end{aligned}$$

So \(\overline{L}\left( k\right) \) is monotonically decreasing in the range \(\left\{ {1 \ldots {k_\mathrm{max }}} \right\} \) and reaches the minimum at the point \(k=k_\mathrm{max}\). Therefore, the minimum of \(\overline{L}\left( n\right) \) in the range \(\left\{ {2 \ldots {2^{{k_\mathrm{max }}}}} \right\} \) occurs at the point \(n=2^{k_\mathrm{max}}\), i.e., \(n=2^{\left\lfloor {{{\log }_2}{n_\mathrm{max }}} \right\rfloor }\).

(b.2) Since the function \(\overline{L}\left( n\right) \) is monotonically decreasing in the range \(\big \{ {2^{{k_\mathrm{max }}}} + 1 \ldots {n_\mathrm{max }} \big \}\), the minimum of \(\overline{L}\left( n\right) \) in the range occurs at the point \(n={n_\mathrm{max }}\).

Combining (b.1) and (b.2), it can be seen that the optimal solution of (17) is reached at \(n=2^{\left\lfloor {{{\log }_2}{n_\mathrm{max }}} \right\rfloor }\) or \(n=n_\mathrm{max}\) when \(n_\mathrm{max} < 2^{k_\mathrm{opt}}\).

Combining the case (a) and the case (b), the theorem is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Le, D., Wu, X. et al. Efficient bit sifting scheme of post-processing in quantum key distribution. Quantum Inf Process 14, 3785–3811 (2015). https://doi.org/10.1007/s11128-015-1035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1035-8

Keywords

Navigation