Skip to main content
Log in

Quantum-discord-triggered superradiance and subradiance in a system of two separated atoms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate collective radiant properties of two separated atoms in X-type quantum states. We show that quantum correlations measured by quantum discord (QD) can trigger and enhance superradiance and subradiance in the two-atom system even though in the absence of interatomic quantum entanglement. We also explore quantum statistical properties of photons in the superradiance and subradiance by addressing the second-order correlation function. In particular, when the initial state of the two separated atoms is the Werner state with nonzero QD, we find that radiation photons in the superradiant region exhibit the nonclassical sub-Poissonian statistics and the degree of the sub-Poissonian statistics increases with increasing of the QD amount, while radiation photons in the subradiant region have either the sub-Poissonian or super-Poissonian statistics depending on the amount of QD and the directional angle. In the subradiant regime, we predict the QD-triggered photon statistics transition from the super-Poissonian to sub-Poissonian statistics. These results shed a new light on applications of QD as a quantum resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88, 017901-1–017901-4 (2001)

    Article  ADS  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  3. Datta, A., Shaji, V., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502-1–050502-4 (2008)

    Article  ADS  Google Scholar 

  4. Merali, Z.: Quantum computing: the power of discord. Nature 474, 24–26 (2011)

    Article  ADS  Google Scholar 

  5. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501-1–200501-4 (2008)

    Article  ADS  Google Scholar 

  6. Datta, A., Gharibian, S.: Signatures of nonclassicality in mixed-state quantum computation. Phys. Rev. A 79, 042325-1–042325-8 (2009)

    Article  ADS  Google Scholar 

  7. Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J. Quant. Inf. 9, 1643–1650 (2011)

    Article  MathSciNet  Google Scholar 

  8. Roa, L., Retamal, J.C., Alid-Vaccarezza, M.: Dissonance is required for assisted optimal state discrimination. Phys. Rev. Lett. 107, 080401-1–080401-4 (2011)

    Article  ADS  Google Scholar 

  9. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328-1–022328-5 (2012)

    ADS  Google Scholar 

  10. Madhok, V., Datta, A.: Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27, 1245041–1245058 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  11. Daki, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  12. Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A 88, 022315-1–022315-4 (2013)

    ADS  Google Scholar 

  13. Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502-1–090502-4 (2008)

    ADS  Google Scholar 

  14. Piani, M., Christandl, M., Mora, C.E., Horodecki, P.: Broadcast copies reveal the quantumness of correlations. Phys. Rev. Lett. 102, 250503-1–250503-4 (2009)

    ADS  Google Scholar 

  15. Liu, Y., Lu, J., Zhou, L.: Quantum correlations of two qubits interacting with a macroscopic medium. Quantum Inf. Process. 14, 1343–1360 (2015)

  16. Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process. 12, 3421–3435 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Xie, C.M., Liu, Y.M., Xing, H., Chen, Jl, Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  19. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323-1–032323-4 (2011)

    Article  ADS  Google Scholar 

  20. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324-1–032324-5 (2011)

    Article  ADS  Google Scholar 

  21. Streltsov, A., Kampermannm, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  22. Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501-1–070501-4 (2012)

    Article  ADS  Google Scholar 

  23. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413-1–224413-7 (2008)

    ADS  Google Scholar 

  24. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108-1–022108-9 (2009)

    Article  ADS  Google Scholar 

  25. Werlang, T., Trippe, C., Ribeiro, G.A.P., Gustavo, R.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  26. Werlang, T., Ribeiro, G.A.P., Gustavo, R.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334-1–062334-10 (2011)

    Article  ADS  Google Scholar 

  27. Wang, C., Zhang, Y.Y., Chen, Q.H.: Quantum correlations in the collective spin systems. Phys. Rev. A 85, 052112-1–052112-9 (2012)

    MathSciNet  ADS  Google Scholar 

  28. Maziero, J., Guzman, H.C., leri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106-1–012106-6 (2010)

    Article  ADS  Google Scholar 

  29. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323-1–052323-7 (2011)

    ADS  Google Scholar 

  30. Yuan, J.B., Kuang, L.M.: Quantum-discord amplification induced by a quantum phase transition via a cavity-Bose-Einstein-condensate system. Phys. Rev. A 87, 024101-1–024101-5 (2013)

    ADS  Google Scholar 

  31. Xu, L., Yuan, J.B., Tan, Q.S., Zhou, L., Kuang, L.M.: Dynamics of quantum discord for two correlated qubits in two independent reservoirs at finite temperature. Eur. Phys. J. D 64, 565–571 (2011)

    Article  ADS  Google Scholar 

  32. Yuan, J.B., Liao, J.Q., Kuang, L.M.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B 43, 165503-1–165503-9 (2010)

    Article  ADS  Google Scholar 

  33. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  Google Scholar 

  34. Freedhoff, H., van Kranendonk, J.: Theory of coherent resonant absorption and emission at infrared and optical frequencies. Can. J. Phys. 45, 1833–1859 (1967)

    Article  ADS  Google Scholar 

  35. Stroud Jr, C.R., Eberly, J.H., Lama, W.L., Mandel, L.: Superradiant effects in systems of two-level atoms. Phys. Rev. A 5, 1094–1104 (1972)

    Article  ADS  Google Scholar 

  36. Pavolini, D., Crubellier, A., Pillet, P., Cabaret, L., Liberman, S.: Experimental evidence for subradiance. Phys. Rev. Lett. 54, 1917–1920 (1985)

    Article  ADS  Google Scholar 

  37. Skribanowitz, N., Herman, I.P., MacGillivray, J.C., Feld, M.S.: Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973)

    Article  ADS  Google Scholar 

  38. DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped lons. Phys. Rev. Lett. 76, 2049–2052 (1996)

    Article  ADS  Google Scholar 

  39. Scully, M.O., Fry, E.S., Raymond Ooi, C.H., Wodkiewicz, K.: Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. Phys. Rev. Lett. 010501-1-010501-4 (2006)

  40. Scully, M.O.: Correlated spontaneous emission on the Volga. Laser Phys. 17, 635–646 (2007)

    Article  ADS  Google Scholar 

  41. Scully, M.O., Svidzinsky, A.A.: The super of superradiance. Science 325, 1510–1511 (2009)

    Article  Google Scholar 

  42. Scully, M.O.: Collective lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601-1–143601-4 (2009)

    Article  ADS  Google Scholar 

  43. Svidzinsky, A.A., Chang, J.T., Scully, M.O.: Cooperative spontaneous emission of N atoms: many-body eigenstates, the effect of virtual Lamb shift processes, and analogy with radiation of N classical oscillators. Phys. Rev. A 81, 053821-1–053821-15 (2010)

    Article  ADS  Google Scholar 

  44. Sete, E.A., Svidzinsky, A.A., Eleuch, H., Yang, Z., Nevelsa, R.D., Scully, M.O.: Correlated spontaneous emission on the Danube. J. Mod. Opt. 57, 1311–1330 (2010)

    Article  ADS  Google Scholar 

  45. Svidzinsky, A.A.: Nonlocal effects in single-photon superradiance. Phys. Rev. A 85, 013821-1–013821-5 (2012)

    Article  ADS  Google Scholar 

  46. Brooke, P.G., Marzlin, K.P., Cresser, J.D., Sanders, B.C.: Super- and subradiant emission of two-level systems in the near-Dicke limit. Phys. Rev. A 77, 033844-1–033844-13 (2008)

    ADS  Google Scholar 

  47. Choquette, J.J., Marzlin, K.P., Sanders, B.C.: Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface. Phys. Rev. A 82, 023827-1–023827-10 (2010)

    Article  ADS  Google Scholar 

  48. Bienaime, T., Piovella, N., Kaiser, R.: Controlled Dicke subradiance from a large cloud of two-level systems. Phys. Rev. Lett. 108, 123602-1–123602-5 (2012)

    Article  ADS  Google Scholar 

  49. Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S., Rueffer, R.: Collective lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010)

    Article  ADS  Google Scholar 

  50. Röhlsberger, R., Wille, H.C., Schlage, K., Sahoo, B.: Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012)

    Article  ADS  Google Scholar 

  51. Wolfe, E., Yelin, S.F.: Certifying separability in symmetric mixed states, and superradiance. Phys. Rev. Lett. 112, 140402-1–140402-5 (2014)

    Article  ADS  Google Scholar 

  52. Lin, G.D., Yelin, S.F.: Superradiance: an integrated approach to cooperative effects in various systems. Adv. Atomic Mol. Opt. Phys. 61, 295–329 (2012)

    Article  ADS  Google Scholar 

  53. Wiegner, R., Zanthier, J., von Agarwal, G.S.: Quantum-interference-initiated superradiant and subradiant emission from entangled atoms. Phys. Rev. A 84, 023805-1–023805-10 (2011)

    Article  ADS  Google Scholar 

  54. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314-1–062314-12 (2000)

    ADS  Google Scholar 

  55. Agarwal, G.S.: Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches. Quantum Optics. Springer, Berlin (1974)

    Google Scholar 

  56. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  Google Scholar 

  57. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303-1–042303-6 (2008)

    ADS  Google Scholar 

  58. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105-1–042105-7 (2010)

    ADS  Google Scholar 

  59. Galve, F., Giorgi, G.L., Zambrini, R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102-1–012102-5 (2011)

    ADS  Google Scholar 

  60. Werner, R.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  61. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  62. Davidovich, L.: Sub-Poissonian processes in quantum optics. Rev. Mod. Phys. 68, 127–173 (1996)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program (Grant No. 2013CB921804), the NSFC (Grant Nos. 11375060, 11075050, and 11004050), the CPSFFP (Grant No. 2013T60769), and the HPNSF (Grant No. 11JJ7001). S. Q. Tang thanks Dr. Jie-Qiao Liao for useful discussions.

Conflict of interest

The authors declared that they have no conflict of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Man Kuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, SQ., Yuan, JB., Kuang, LM. et al. Quantum-discord-triggered superradiance and subradiance in a system of two separated atoms. Quantum Inf Process 14, 2883–2894 (2015). https://doi.org/10.1007/s11128-015-1026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1026-9

Keywords

Navigation