Skip to main content
Log in

Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s function approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents a Green’s function-based root locus method to investigate the boundary between Markovian and non-Markovian open quantum systems in the frequency domain. A Langevin equation for the boson-boson coupling system is derived, where we show that the structure of the Green’s function dominates the system dynamics. In addition, by increasing the coupling between the system and its environment, the system dynamics are driven from Markovian to non-Markovian dynamics, which results from the redistribution in the modes of the Green’s function in the frequency domain. Both a critical transition and a critical point condition under Lorentzian noise are graphically presented using a root locus method. Related results are verified using an example of a boson-boson coupling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Divincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Chirolli, L., Burkard, G.: Decoherence in solid-state qubits. Adv. Phys. 57(3), 225–285 (2008)

    Article  ADS  Google Scholar 

  4. Zhou, D., Lang, A., Joynt, R.: Disentanglement and decoherence from classical non-Markovian noise: random telegraph noise. Quantum Inf. Process. 9(6), 727–747 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  6. Petersen, I.R.: Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control. Automatica 47(8), 1757–1763 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hassen, S.Z.S., Heurs, M., Huntington, E.H., Petersen, I.R., James, M.R.: Frequency locking of an optical cavity using linear-quadratic Gaussian integral control. J. Phys. B At. Mol. Phys. 42(17), 175501 (2009)

    Article  ADS  Google Scholar 

  8. Xue, S., Wu, R.B., Zhang, W.M., Zhang, J., Li, C.W., Tarn, T.J.: Decoherence suppression via non-Markovian coherent feedback control. Phys. Rev. A 86, 052304 (2012)

    Article  ADS  Google Scholar 

  9. Tu, M.W.Y., Zhang, W.M.: Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78(23), 235311 (2008)

    Article  ADS  Google Scholar 

  10. Tu, M.W.Y., Lee, M.T., Zhang, W.M.: Exact master equation and non-Markovian decoherence for quantum dot quantum computing. Quantum Inf. Process. 8(6), 631–646 (2009)

    Article  MATH  Google Scholar 

  11. Wu, R.-B., Li, T.-F., Kofman, A., Zhang, J., Liu, Yx, Pashkin, Y., Tsai, J.-S., Nori, F.: Spectral analysis and identification of noises in quantum systems. Phys. Rev. A 87, 022324 (2013)

    Article  ADS  Google Scholar 

  12. Longhi, S.: Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir. Phys. Rev. A 74, 063826 (2006)

    Article  ADS  Google Scholar 

  13. Tan, H.T., Zhang, W.M.: Non-Markovian dynamics of an open quantum system with initial system-reservoir correlations: A nanocavity coupled to a coupled-resonator optical waveguide. Phys. Rev. A 83(3), 032102 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. Burkard, G.: Non-Markovian qubit dynamics in the presence of \(1/f\) noise. Phys. Rev. B 79(12), 125317 (2009)

    Article  ADS  Google Scholar 

  15. Anastopoulos, C., Shresta, S., Hu, B.L.: Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field. Quantum Inf. Process. 8(6), 549–563 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xue, S., Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: Quantum operation for a one-qubit system under a non-Markovian environment. J. Phys. B At. Mol. Phys. 44(15), 154016 (2011)

    Article  ADS  Google Scholar 

  17. Orieux, A., DArrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  18. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Two-qubit entanglement dynamics for two different non-Markovian environments. Phys. Scr. T140, 014014 (2010)

    Article  ADS  Google Scholar 

  19. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G.: Recovering entanglement by local operations. Ann. Phys. 350, 211–224 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)

    Article  ADS  Google Scholar 

  21. Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  22. Franco, R.L., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chruściński, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014)

    Article  ADS  Google Scholar 

  24. Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  Google Scholar 

  25. Zhang, W.M., Lo, P.Y., Xiong, H.N., Tu, M.W.Y., Franco, N.: General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109, 170402 (2012)

    Article  ADS  Google Scholar 

  26. Lei, C.U., Zhang, W.M.: Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A 84, 052116 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  27. Xiong, H.N., Zhang, W.M., Tu, M.W.Y., Braun, D.: Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems. Phys. Rev. A 86, 032107 (2012)

    Article  ADS  Google Scholar 

  28. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7(12), 931–934 (2011)

    Article  Google Scholar 

  29. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ogata, K.: Modern Control Engineering. PrenticeHall, Englewood Cliffs (1996)

    Google Scholar 

  31. Zhao, X.Y., Hedemann, S.R., Yu, T.: Restoration of a quantum state in a dephasing channel via environment-assisted error correction. Phys. Rev. A 88, 022321 (2013)

    Article  ADS  Google Scholar 

  32. Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    Article  ADS  Google Scholar 

  33. Xue, S., Wu, R.B., Tarn, T.J.: Modeling and analysis of non-Markovian open quantum systems for coherent feedback. In 3rd IFAC International Conference on Intelligent Control and Automation Science, 3, pp. 365–370, (2013)

Download references

Acknowledgments

This research was supported by the Australian Research Council under grant FL110100020. Re-Bing Wu acknowledges support from TNlist and Natural Science Foundation of China (Grant Nos. 61374091 and 61134008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibei Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Wu, R., Tarn, TJ. et al. Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s function approach. Quantum Inf Process 14, 2657–2672 (2015). https://doi.org/10.1007/s11128-015-1000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1000-6

Keywords

Navigation