Skip to main content
Log in

Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) has been widely used in the context of quantum information processing (QIP). However, despite the great similarities between NMR and nuclear quadrupole resonance (NQR), no experimental implementation for QIP using NQR has been reported. We describe the implementation of basic quantum gates and their applications on the creation and manipulation of pseudopure states using linearly polarized radiofrequency pulses under static magnetic field perturbation. The NQR quantum operations were implemented using a single-crystal sample of \(\hbox {KClO}_{3}\) and observing \(^{35}\hbox {Cl}\) nuclei, which possess spin 3/2 and give rise to a two-qubit system. The results are very promising and indicate that NQR can be successfully used for performing fundamental experiments in QIP. One advantage of NQR in comparison with NMR is that the main interaction is internal to the sample, which makes the system more compact, lowering its cost and making it easier to be miniaturized to solid-state devices. Furthermore, as an example, the study of squeezed spin states could receive relevant contributions from NQR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Araujo-Ferreira, A.G., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Classical bifurcation in a quadrupolar nmr system. Phys. Rev. A 87(5), 053,605 (2013). doi:10.1103/PhysRevA.87.053605

    Google Scholar 

  2. Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114(4), 043,604 (2015)

    Google Scholar 

  3. Auccaise, R., Maziero, J., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107(7), 070,501 (2011). doi:10.1103/PhysRevLett.107.070501

    Google Scholar 

  4. Auccaise, R., Teles, J., Sarthour, R.S., Bonagamba, T.J., Oliveira, I.S., de Azevedo, E.R.: A study of the relaxation dynamics in a quadrupolar nmr system using quantum state tomography. J. Magn. Reson. 192(1), 17–26 (2008). doi:10.1016/j.jmr.2008.01.009

    ADS  Google Scholar 

  5. Bain, A., Khasawneh, M.: From NQR to NMR: the complete range of quadrupole interactions. Concepts Magn. Reson. Part A 22A(2), 69–78 (2004). doi:10.1002/cmr.a.20013

    Google Scholar 

  6. Baugh, J., Moussa, O., Ryan, C.A., Laflamme, R., Ramanathan, C., Havel, T.F., Cory, D.G.: Solid-state nmr three-qubit homonuclear system for quantum-information processing: control and characterization. Phys. Rev. A 73(2), 022,305 (2006). doi:10.1103/PhysRevA.73.022305

    Google Scholar 

  7. Bonk, F.A., Sarthour, R.S., deAzevedo, E.R., Bulnes, J.D., Mantovani, G.L., Freitas, J.C.C., Bonagamba, T.J., Guimaraes, A.P., Oliveira, I.S.: Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system. Phys. Rev. A 69(4), 042322–042322 (2004)

    ADS  Google Scholar 

  8. Cappellaro, P., Goldstein, G., Hodges, J.S., Jiang, L., Maze, J.R., Sorensen, A.S., Lukin, M.D.: Environment-assisted metrology with spin qubits. Phys. Rev. A 85(3), (2012). doi:10.1103/PhysRevA.85.032336

  9. Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006). doi:10.1126/science.1131871

    Article  ADS  Google Scholar 

  10. Chuang, I.L., Gershenfeld, N., Kubinec, M.G., Leung, D.W.: Bulk quantum computation with nuclear magnetic resonance: theory and experiment. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454, 447–467 (1969)

    Google Scholar 

  11. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by nmr spectroscopy. Proc. Natl. Acad. Sci. USA 94(5), 1634–1639 (1997)

    ADS  Google Scholar 

  12. Estrada, R.A., de Azevedo, E.R., Duzzioni, E.I., Bonagamba, T.J., Youssef Moussa, M.H.: Spin coherent states in nmr quadrupolar system: experimental and theoretical applications. Eur. Phys. J. D 67(6), 127 (2013). doi:10.1140/epjd/e2013-30689-1

    ADS  Google Scholar 

  13. Fisher, A.: Quantum computing in the solid state: the challenge of decoherence. Philos Tr. R. Soc. S-A 361(1808), 1441–1450 (2003). doi:10.1098/rsta.2003.1213

    ADS  Google Scholar 

  14. Fortunato, E.M., Pravia, M.A., Boulant, N., Teklemariam, G., Havel, T.F., Cory, D.G.: Design of strongly modulating pulses to implement precise effective hamiltonians for quantum information processing. J. Chem. Phys. 116(17), 7599–7606 (2002)

    ADS  Google Scholar 

  15. Furman, G., Goren, S.: Pure nqr quantum computing. Zeitschrift Fur Naturforschung Sect. A-A J. Phys. Sci. 57(6–7), 315–319 (2002)

    ADS  Google Scholar 

  16. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453(7198), 1043–1049 (2008). doi:10.1038/nature07129

    Article  ADS  Google Scholar 

  18. Itoh, K.: An all-silicon linear chain nmr quantum computer. Solid State Commun. 133(11), 747–752 (2005)

    ADS  Google Scholar 

  19. Kampermann, H., Veeman, W.: Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. J. Chem. Phys. 122(21), 214,108 (2005). doi:10.1063/1.1904595

    Google Scholar 

  20. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbruggen, T., Glaser, S.: Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005). doi:10.1016/j.jmr.2004.11.004

    ADS  Google Scholar 

  21. Khitrin, A.K., Fung, B.M.: Nmr simulation of an eight-state quantum system. Phys. Rev. A 64, 032,306 (2001). doi:10.1103/PhysRevA.64.032306

    Google Scholar 

  22. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47(6), 5138–5143 (1993). doi:10.1103/PhysRevA.47.5138

    ADS  Google Scholar 

  23. Knill, E., Chuang, I., Laflamme, R.: Effective pure states for bulk quantum computation. Phys. Rev. A 57, 3348–3363 (1998). doi:10.1103/PhysRevA.57.3348

    ADS  MathSciNet  Google Scholar 

  24. Law, C., Ng, H., Leung, P.: Coherent control of spin squeezing. Phys. Rev. A 63(5), 055,601 (2001). doi:10.1103/PhysRevA.63.055601

    Google Scholar 

  25. Leskowitz, G., Ghaderi, N., Olsen, R., Mueller, L.: Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid. J. Chem. Phys. 119(3), 1643–1649 (2003). doi:10.1063/1.1582171

    ADS  Google Scholar 

  26. Maziero, J., Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., deAzevedo, E.R., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Quantum discord in nuclear magnetic resonance systems at room temperature. Braz. J. Phys. 43(1–2), 86–104 (2013). doi:10.1007/s13538-013-0118-1

    ADS  Google Scholar 

  27. Possa, D., Gaudio, A.C., Freitas, J.C.C.: Numerical simulation of nqr/nmr: applications in quantum computing. J. Magn. Reson. 209(2), 250–260 (2011). doi:10.1016/j.jmr.2011.01.020

    ADS  Google Scholar 

  28. Ramanathan, C., Boulant, N., Chen, Z., Cory, D.G., Chuang, I., Steffen, M.: Nmr quantum information processing. Quantum Inf. Process. 3(1–5), 15–44 (2004). doi:10.1007/s11128-004-3668-x

    MATH  Google Scholar 

  29. Rochester, S.M., Ledbetter, M.P., Zigdon, T., Wilson-Gordon, A.D., Budker, D.: Orientation-to-alignment conversion and spin squeezing. Phys. Rev. A 85(2), (2012). doi:10.1103/PhysRevA.85.022125

  30. Sinha, N., Mahesh, T., Ramanathan, K., Kumar, A.: Toward quantum information processing by nuclear magnetic resonance: pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus. J. Chem. Phys. 114(10), 4415–4420 (2001). doi:10.1063/1.1346645

    ADS  Google Scholar 

  31. Soares-Pinto, D.O., Moussa, M.H.Y., Maziero, J., deAzevedo, E.R., Bonagamba, T.J., Serra, R.M., Celeri, L.C.: Equivalence between redfield- and master-equation approaches for a time-dependent quantum system and coherence control. Phys. Rev. A 83(6), 062,336 (2011). doi:10.1103/PhysRevA.83.062336

    Google Scholar 

  32. Suter, D., Mahesh, T.S.: Spins as qubits: quantum information processing by nuclear magnetic resonance. J. Chem. Phys. 128(5), 052,206 (2008). doi:10.1063/1.2838166

    Google Scholar 

  33. Teles, J., deAzevedo, E.R., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J.: Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126, 154506

  34. Utton, D.: Temperature dependence of nuclear quadrupole resonance frequency of 35cl in kclo3 between 12 degrees and 90 degrees k. J. Chem. Phys. 47(2), 371 (1967). doi:10.1063/1.1711901

    ADS  Google Scholar 

  35. Vandersypen, L., Chuang, I.: Nmr techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037–1069 (2004)

    ADS  Google Scholar 

  36. Wineland, D., Bollinger, J., Itano, W., Moore, F., Heinzen, D.: SPIN squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46(11), R6797–R6800 (1992)

    ADS  Google Scholar 

  37. Yusa, G., Muraki, K., Takashina, K., Hashimoto, K., Hirayama, Y.: Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device. Nature 434(7036), 1001–1005 (2005). doi:10.1038/nature03456

    Article  ADS  Google Scholar 

  38. Zeldes, H., Livingston, R.: Zeeman effect on the quadrupole spectra of sodium, potassium, and barium chlorates. J. Chem. Phys. 26(5), 1102–1106 (1957). doi:10.1063/1.1743479

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Brazilian agencies FAPESP (2012/02208-5) and CNPq (483109/2011-8), and by the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ). The authors also acknowledge Aparecido Donizeti Fernandes de Amorim and Elderson Cássio Domenicucci by the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Teles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teles, J., Rivera-Ascona, C., Polli, R.S. et al. Experimental implementation of quantum information processing by Zeeman-perturbed nuclear quadrupole resonance. Quantum Inf Process 14, 1889–1906 (2015). https://doi.org/10.1007/s11128-015-0967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0967-3

Keywords

Navigation