Skip to main content
Log in

General SIC measurement-based entanglement detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the quantum separability problem by using general symmetric informationally complete measurements and present separability criteria for both \(d\)-dimensional bipartite and multipartite systems. The criterion for bipartite quantum states is effective in detecting several well-known classes of quantum states. For isotropic states, it becomes both necessary and sufficient. Furthermore, our criteria can be experimentally implemented, and the criterion for two-qudit states requires less local measurements than the one based on mutually unbiased measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Rudolph, O.: Some properties of the computable cross-norm criterion for separability. Phys. Rev. A 67, 032312 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quant. Inf. Comput. 3, 193 (2003)

    MATH  Google Scholar 

  8. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions and permutation criteria. Open Syst. Inf. Dyn. 13, 103 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, K., Wu, L.A.: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Chen, K., Wu, L.A.: Test for entanglement using physically observable witness operators and positive maps. Phys. Rev. A 69, 022312 (2004)

    Article  ADS  Google Scholar 

  11. Wocjan, P., Horodecki, M.: Characterization of combinatorially independent permutation separability criteria. Open Syst. Inf. Dyn. 12, 331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Albeverio, S., Chen, K., Fei, S.M.: Generalized reduction criterion for separability of quantum states. Phys. Rev. A 68, 062313 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Guhne, O., Hyllus, P., Gittsovich, O., Eisert, J.: Covariance matrices and the separability problem. Phys. Rev. Lett. 99, 130504 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Vicente, J.D.: Separability criteria based on the Bloch representation of density matrices. Quant. Inf. Comput. 7, 624 (2007)

    MATH  Google Scholar 

  15. Vicente, J.D.: Further results on entanglement detection and quantification from the correlation matrix criterion. J. Phys. A Math. Theor. 41, 065309 (2008)

    Article  ADS  Google Scholar 

  16. Li, M., Wang, J., Fei, S.M., Li-Jost, X.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)

    Article  ADS  Google Scholar 

  17. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yu, S., Pan, J.W., Chen, Z.B., Zhang, Y.D.: Comprehensive test of entanglement for two-Level systems via the indeterminacy relationship. Phys. Rev. Lett. 91, 217903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  19. Li, M., Fei, S.M.: Gisin’s theorem for arbitrary dimensional multipartite states. Phys. Rev. Lett. 104, 240502 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhao, M.J., Ma, T., Fei, S.M., Wang, Z.X.: Inequalities detecting quantum entanglement for \(2\otimes d\) systems. Phys. Rev. A 83, 052120 (2011)

    Article  ADS  Google Scholar 

  21. Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)

    Article  ADS  Google Scholar 

  22. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.) 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Chen, B., Ma, T., Fei, S.M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)

    Article  ADS  Google Scholar 

  24. Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)

    Article  ADS  Google Scholar 

  25. Liu, L., Gao, T., Yan, F.: Separability criteria via sets of mutually unbiased measurements. arXiv:1501.01717 [quant-ph] (2015)

  26. Beneduci, R.T., Bullock, J., Busch, P., Carmeli, C., Heinosaari, T., Toigo, A.: Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures. Phys. Rev. A 88, 032312 (2013)

    Article  ADS  Google Scholar 

  27. Adamson, R.B.A., Steinberg, A.M.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105, 030406 (2010)

    Article  ADS  Google Scholar 

  28. Fernández-Pérez, A., Klimov, A.B., Saavedra, C.: Quantum process reconstruction based on mutually unbiased basis. Phys. Rev. A 83, 052332 (2011)

    Article  ADS  Google Scholar 

  29. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Rastegin, A.E.: Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 67, 269 (2013)

    Article  ADS  Google Scholar 

  31. Appleby, D.M.: Symmetric informationally complete measurements of arbitrary rank. Opt. Spectrosc. 103, 416 (2007)

    Article  ADS  Google Scholar 

  32. Gour, G., Kalev, A.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor 47, 335302 (2014)

    Article  MathSciNet  Google Scholar 

  33. Scott, A.J., Grassl, M.: Symmetric informationally complete positive-operator-valued measures: a new computer study. J. Math. Phys. 51, 042203 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rastegin, A.E.: Notes on general SIC-POVMs. Phys. Scr. 89, 085101 (2014)

    Article  ADS  Google Scholar 

  35. Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C., Krammer, P.: Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A 72, 052331 (2005)

    Article  ADS  Google Scholar 

  36. Yu, S.X., Liu, N.L.: Entanglement detection by local orthogonal observables. Phys. Rev. Lett. 95, 150504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC under number 11275131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, T. & Fei, SM. General SIC measurement-based entanglement detection. Quantum Inf Process 14, 2281–2290 (2015). https://doi.org/10.1007/s11128-015-0951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0951-y

Keywords

Navigation