Skip to main content
Log in

Multi-qudit state sharing via various high-dimensional Bell channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, an innovative and efficient scheme is presented for multi-participants sharing arbitrary \(n+1\)-qudit states with two-qudit maximally entangled Bell channels under the control of \(p\) agents. After the sender (Alice) performs one GHZ-state measurement on her qudits, and each controller (all Bobs) makes a single-qudit measurement, the recipient (Charlie) only needs to operate a single-qudit unitary transformation based on the classical information from the sender and all controllers. This scheme is further expanded to deal with how to use non-maximally entangled Bell channels where an additional multi-qudit unitary operation is operated. Our result demonstrates that it is possible to share multi-qudit state under supervision with only two-qudit entangled Bell channels which makes it convenient in a practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhao, N.B., et al.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A. 76, 062317 (2007)

    Article  ADS  Google Scholar 

  2. Zhan, Y.B.: Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement. Chin. Phys. 16, 2557 (2007)

    Article  ADS  Google Scholar 

  3. Han, L.F., Yuan, H.: Probabilistic teleportation of an arbitrary two-qubit state via one-dimensional four-qubit cluster. Int. J. Quantum Inf. 6(5), 1093–1099 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001)

    Article  ADS  Google Scholar 

  5. Deng, F.G., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, Z.Y., et al.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276, 322–326 (2007)

    Article  ADS  Google Scholar 

  8. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420 (2004)

  9. Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  10. Man, Z.X., Xia, Y.J.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42, 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jiang, M., Dong, D.Y.: An efficient scheme for multi-party quantum state sharing of an arbitrary multi-qubit state with one GHZ channel. Quantum Inf 12(2), 841–851 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lance, A.M., et al.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  13. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  14. Shi, R.H., et al.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. 10(2), 231–239 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xue, Z.Y., et al.: Quantum state sharing via the GHZ state in cavity QED without joint measurement. Int. J. Quantum Inf. 4(5), 749–759 (2006)

    Article  MATH  Google Scholar 

  16. Wang, Z.Y., et al.: Three-party qutrit-state sharing. Eur. Phys. J. D 41(2), 371–375 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, Z.J., et al.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33(1), 133–136 (2005)

    Article  ADS  Google Scholar 

  18. Yang, Yu-Guang, et al.: Economical five-party quantum state sharing of an arbitrary m-atom with five-atom cluster state in cavity QED. Eur. Phys. J. D 67, 59 (2013)

    Article  ADS  Google Scholar 

  19. Tao, Y.J., et al.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17(02), 624–627 (2008)

    Article  ADS  Google Scholar 

  20. Xia, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946 (2008)

    Article  ADS  Google Scholar 

  21. Hsu, L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68022306 (2003)

  22. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  24. Deng, F.G., et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D. 39(3), 459–464 (2006)

    Article  ADS  Google Scholar 

  25. Shi, R.H., et al.: Efficient multi-party quantum state sharing of an arbitrary two-qubit state. Opt. Commun. 283, 2762–2766 (2010)

    Article  ADS  Google Scholar 

  26. Li, D., et al.: Multiparty quantum state sharing of m-qubit state. Int. J. Mod. Phys. C 18(11), 1699–1706 (2007)

    Article  ADS  MATH  Google Scholar 

  27. Li, D., et al.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905–908 (2011)

    Article  ADS  Google Scholar 

  28. Cleve, R., Cleve, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  29. Yuan, H., et al.: Tripartite arbitrary two-qutrit quantum state sharing. Commun. Theor. Phys. 49(5), 1191–1194 (2008)

    Article  ADS  Google Scholar 

  30. Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrarym-qudit state with two-qubit entanglements and generalized Bell-state measurements. Phys. A 387(18), 4716–4722 (2008)

    Article  MathSciNet  Google Scholar 

  31. Shi, R.H., et al.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int J Theor Phys 50, 3329–3336 (2011)

    Article  MATH  Google Scholar 

  32. Shi, R.H., et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf Process 10, 53–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wu, J.: Symmetric and probabilistic quantum state sharing via positive operator-valued measure. Int J Theor Phys 49, 324–333 (2010)

  34. Hou, K., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multi qubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Neeley, M., et al.: Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)

    Article  ADS  Google Scholar 

  36. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

  37. Li, S.W., et al.: Multi-qudit information splitting with multiple controllers. Quantum Inf. 13(5), 1057–1066 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to the patient and professional guidance of the anonymous reviewer. This work is supported by the National Natural Science Foundation of China (Nos. 61473199 and 61104002), the Natural Science Foundation of Jiangsu Province (No. BK2011283), and the Project on the Integration of Industry, Education and Research of Jiangsu Province (No. BY2012110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Yz., Jiang, M. Multi-qudit state sharing via various high-dimensional Bell channels. Quantum Inf Process 14, 1091–1102 (2015). https://doi.org/10.1007/s11128-014-0889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0889-5

Keywords

Navigation