Skip to main content
Log in

Analytical expression of genuine tripartite quantum discord for symmetrical X-states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The study of classical and quantum correlations in bipartite and multipartite systems is crucial for the development of quantum information theory. Among the quantifiers adopted in tripartite systems, the genuine tripartite quantum discord (GTQD), estimating the amount of quantum correlations shared among all the subsystems, plays a key role since it represents the natural extension of quantum discord used in bipartite systems. In this paper, we derive an analytical expression of GTQD for three-qubit systems characterized by a subclass of symmetrical X-states. Our approach has been tested on both GHZ and maximally mixed states reproducing the expected results. Furthermore, we believe that the procedure here developed constitutes a valid guideline to investigate quantum correlations in form of discord in more general multipartite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It can be shown that this quantity measures, in terms of relative entropy, the distance between the state \(\rho \) and the nearest classical state with no correlations \(\rho ^{A}\otimes \rho ^{B}\otimes \rho ^{C}\). Indeed, by the definition of relative entropy, we get \(S(\rho ||\rho ^{A}\otimes \rho ^{B}\otimes \rho ^{C})=-\mathrm {Tr}[\rho \log _{2}(\rho ^{A}\otimes \rho ^{B}\otimes \rho ^{C})]-S(\rho )\), and then, using the linearity of trace and the additivity of logarithm—remember that \(\rho ^{i}\) are the marginals of \(\rho \)—we get \(-\mathrm {Tr}[\rho \log _{2}(\rho ^{A}\otimes \rho ^{B}\otimes \rho ^{C})]=-Tr[\rho \log _{2}(\rho ^{A})\otimes I\otimes I]+\cdots =S(\rho ^{A})+S(\rho ^{B})+S(\rho ^{C})\) [12, 27].

  2. In Eqs. (8) and (9), we used the bipartite quantifiers \(J(\rho _{A,B})=\max [S(\rho _{A,B})-S(\rho _{A|B}),S(\rho _{A,B})-S(\rho _{B|A})]\) and \(D(\rho _{A,B})=I(\rho _{A,B})-J(\rho _{A,B})\) as they are usually defined in literature for two-qubits systems [3, 12, 24].

  3. Notice that when \(\theta _{i}=0\) other equivalent minima can be found for \(\theta _{i}=\frac{\pi }{2}\) or \(\theta _{i}=\pi \), and when \(\theta _{i}=\frac{\pi }{4}\) other equivalent minima can be found for \(\theta _{i}=\frac{3\pi }{4}\), but we will focus only on the cases \(\theta =0\) or \(\theta =\frac{\pi }{4}\), which are the simpler ones.

  4. This approach has been recently questioned by Zhao et al.: In their paper [42], they show that the product POVM \(E_{i}^{B}\otimes E_{j}^{C}\) may not be the optimal POVM \(E_{ij}^{BC}\) that minimizes genuine tripartite discord. However, we must notice that the qualitative behaviors of \(D^{(3)}(\rho )\) are not changed by this approach (except for the overestimation of \(D^{(3)}(\rho )\)), i.e., both approaches are able to record the presence of GTQD and its increasing (or decreasing) trend, according to the variations of the parameters which define the density operator \(\rho \).

References

  1. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit x states. Phys. Rev. A 81, 042105 (2010)

  2. Bennett, C.H., Grudka, A., Horodecki, M., Horodecki, P., Horodecki, R.: Postulates for measures of genuine multipartite correlations. Phys. Rev. A 83, 012312 (2011)

    Article  ADS  Google Scholar 

  3. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

  4. Cai, J.T., Abliz, A.: Tripartite correlations in a heisenberg spin ring in thermal equilibrium. Phys. A: Stat. Mech. Appl. 392(10), 2607–2614 (2013)

  5. Chakrabarty, I., Agrawal, P., Pati, A.: Quantum dissension: Generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65(3), 605–612 (2011)

    Article  ADS  Google Scholar 

  6. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit x states. Phys. Rev. A 84, 042313 (2011)

  7. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  8. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  9. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  10. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Giorgi, G.L., Bellomo, B., Galve, F., Zambrini, R.: Genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

  13. Giorgi, G.L., Campbell, S.: Multipartite quantum and classical correlations in symmetric mixed states (2014). arXiv:1409.1021

  14. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: Analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  15. Grimsmo, A.L., Parkins, S., Skagerstam, B.S.K.: Dynamics of genuine multipartite correlations in open quantum systems. Phys. Rev. A 86, 022310 (2012)

    Article  ADS  Google Scholar 

  16. Hamieh, S., Kobes, R., Zaraket, H.: Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325 (2004)

    Article  ADS  Google Scholar 

  17. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Huang, Y.: Quantum discord for two-qubit x states: Analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

  20. Huang, Y.: Computing quantum discord is np-complete. New J. Phys. 16(3), 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Javad Akhtarshenas, S., Mohammadi, H., Mousavi, F.S., Nassajpour, V.: Quantum discord of an arbitrary state of two qubits (2013). arXiv:1304.3914

  22. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  23. Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  24. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  25. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  26. Maziero, J., Zimmer, F.M.: Genuine multipartite system-environment correlations in decoherent dynamics. Phys. Rev. A 86, 042121 (2012)

    Article  ADS  Google Scholar 

  27. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  29. Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96(6), 60003 (2011)

    Article  ADS  Google Scholar 

  30. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  31. Qiu, L., Tang, G., qing Yang, X., min Wang, A.: Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic xxz model. Europhys. Lett 105(3), 30005 (2014)

  32. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  33. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48(3), 435–442 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  36. Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A Math. Theor. 45(9), 095303 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)

    Article  ADS  Google Scholar 

  38. Weinstein, Y.S.: Entanglement dynamics in three-qubit \(x\) states. Phys. Rev. A 82, 032,326 (2010).

  39. Xu, J.: Analytical expressions of global quantum discord for two classes of multi-qubit states. Phys. Lett. A 377(3–4), 238–242 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Ye, B., Liu, Y., Chen, J., Liu, X., Zhang, Z.: Analytic expressions of quantum correlations in qutrit werner states. Quantum Inf. Process. 12(7), 2355–2369 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  42. Zhao, L., Hu, X., Yue, R.H., Fan, H.: Genuine correlations of tripartite system. Quantum Inf. Process. 12, 2371 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Beggi.

Appendices

Appendix 1: Relative entropies definition

Following Zhao et al. [42], we can define the relative entropy \(S(\rho _{A|BC})\) for tripartite systems as:

$$\begin{aligned} S(\rho _{A|BC})=\underset{\{E_{ij}^{BC}\}}{\min }\sum _{ij}p_{ij} S(\rho _{A|E_{ij}^{BC}}), \end{aligned}$$
(33)

where:

$$\begin{aligned} \rho _{A|E_{ij}^{BC}}&= \frac{\tilde{\rho }_{A|E_{ij}^{BC}}}{p_{ij}} =\frac{1}{p_{ij}}\mathrm {Tr}_{B,C}\left[ \left( I^{A}\otimes E_{ij}^{BC}\right) \rho \right] ,\end{aligned}$$
(34)
$$\begin{aligned} p_{i,j}&= \mathrm {Tr}_{A,B,C}\left[ \left( I^{A}\otimes E_{ij}^{BC}\right) \rho \right] . \end{aligned}$$
(35)

In the previous expressions, the operators \(E_{ij}^{BC}\) are positive-operator-valued measures (POVMs) that act on parties \(B\) and \(C\) (i.e., in the Hilbert space \(\mathcal {H}_{BC}=\mathcal {H}_{B}\otimes \mathcal {H}_{C}\)), and whose outcomes are labeled with two indices (\(i,j\)). For sake of simplicity, we will replace the global POVM \(E_{ij}^{BC}\) with the external product of two local POVMs, acting separately on parties \(B\) and \(C\), using the same procedure given in [14]. Moreover, following the convention in literature [12, 16, 17, 30, 42]), we use orthogonal projection-valued measures (PVMs) to optimize entropy in Eq. (33), since they are easier to implement in the numerical minimization process.Footnote 4 Then, the measurement operators are:

$$\begin{aligned} E_{ij}^{BC}&\rightarrow \Pi _{i}^{B}\otimes \Pi _{j}^{C}=\left| \beta _{i}\right\rangle \left\langle \beta _{i}\right| \otimes \left| \gamma _{j}\right\rangle \left\langle \gamma _{j}\right| , \end{aligned}$$
(36)

where \(\left| \beta _{i}\right\rangle \) and \(\left| \gamma _{j}\right\rangle \) are orthogonal normalized basis states of the Hilbert spaces \(\mathcal {H}_{B}\) and \(\mathcal {H}_{C}\), respectively.

A possible parametrization of the basis vectors \(\left| \beta _{i}\right\rangle \) and \(\left| \gamma _{j}\right\rangle \) with respect to the standard basis \(\{\left| 0\right\rangle ,\left| 1\right\rangle \}\) can be found in literature (see [3]; for a full derivation of the basis vectors see [40]):

$$\begin{aligned} \left| \beta _{1}\right\rangle&=\cos \theta _{1}\left| 0_{B}\right\rangle +e^{+i\phi _{1}}\sin \theta _{1}\left| 1_{B}\right\rangle ,\end{aligned}$$
(37)
$$\begin{aligned} \left| \beta _{2}\right\rangle&=\sin \theta _{1}\left| 0_{B}\right\rangle -e^{+i\phi _{1}}\cos \theta _{1}\left| 1_{B}\right\rangle , \end{aligned}$$
(38)
$$\begin{aligned} \left| \gamma _{1}\right\rangle&=\cos \theta _{2}\left| 0_{C}\right\rangle +e^{+i\phi _{2}}\sin \theta _{2}\left| 1_{C}\right\rangle , \end{aligned}$$
(39)
$$\begin{aligned} \left| \gamma _{2}\right\rangle&=\sin \theta _{2}\left| 0_{C}\right\rangle -e^{+i\phi _{2}}\cos \theta _{2}\left| 1_{C}\right\rangle , \end{aligned}$$
(40)

where the angles \(\theta _{i}\) and \(\phi _{i}\) belong to the interval \([0;2\pi )\).

Since we are studying a system whose state is symmetrical under any permutation of its subsystems, any subscript or superscript referring to a particular subsystem in the relative entropy expression (33) can be dropped. Now, recalling the sum rule \(\sum _{l=1}^{2}\tilde{\lambda }_{l}^{(ij)}=p_{ij}\) for the eigenvalues \(\tilde{\lambda }_{l}^{(ij)}\) of \(\tilde{\rho }_{ij}=\tilde{\rho }_{A|E_{ij}^{BC}}\) (crf. Eqs. (34, 35)), we can simplify Eq. (33) as follows:

$$\begin{aligned} S(\rho _{A|BC})=\underset{\{E_{ij}^{BC}\}}{\min }\left[ -H(p) +\sum _{i,j}S(\tilde{\rho }_{ij})\right] , \end{aligned}$$
(41)

where \(H(p)=-\sum _{i,j}p_{ij}\log _{2}(p_{ij})\) is the Shannon Entropy of the probability ensemble\(\{p_{ij}\}\).

Now, using Eqs. (37)–(40) to write the PVMs—together with the change of variables (\(\phi _{1}-\phi _{2}\rightarrow \phi _{1}\), \(\phi _{1}+\phi _{2}\rightarrow \phi _{2}\)), which simplifies our calculations—the relative entropy in (41) can be written as a function of four angular variables:

$$\begin{aligned} S(\rho _{A|BC})&=\underset{\theta _{i},\phi _{i}}{\min }\, S_{rel}(\theta _{1},\theta _{2},\phi _{1},\phi _{2}). \end{aligned}$$
(42)

The final expression for \(S(\rho _{A|BC})\), with all terms written explicitly, is given in Sect. 4.2.

Appendix 2: Analytical study of \(S_{rel}(\theta _{1},\theta _{2},\phi _{1},\phi _{2})\)

The relative entropy \(S_{rel}(\theta _{1},\theta _{2},\phi _{1},\phi _{2})\) of Eq. (22)

$$\begin{aligned} S_{rel}(\theta _{1},\theta _{2},\phi _{1},\phi _{2})=1 +\frac{1}{6}\left[ \lambda _{A} \log _{2}\lambda _{A}+\lambda _{B}\log _{2}\lambda _{B}\right] -\frac{1}{12}\sum _{i=1}^{4}\lambda _{i}\log _{2}\lambda _{i} \end{aligned}$$
(43)

can be studied in a simplified form setting \(\theta _{1}=\theta _{2}=\theta \). Under this condition, the \(\lambda _{j}\) of Eq. (23) become:

$$\begin{aligned} \lambda _{A}&=3+a_{1}\cos ^{2}(2\theta ),\nonumber \\ \lambda _{B}&=3-a_{1}\cos ^{2}(2\theta ),\nonumber \\ \lambda _{C}&=\frac{9}{16}\sin ^{4}(2\theta )\, f(\phi _{1},\phi _{2}),\\ f(\phi _{1},\phi _{2})&=\left[ \left( c_{1}-c_{2}\right) ^{2}+4c_{2} \left( \cos (\phi _{1})+\cos (\phi _{2})\right) \left( c_{2} \cos (\phi _{1})+c_{1}\cos (\phi _{2})\right) \right] \nonumber \\ \lambda _{1,2}&=\lambda _{B}\pm \sqrt{4a_{1}^{2}\cos ^{2}(2\theta ) +\lambda _{C}},\nonumber \\ \lambda _{3,4}&=\lambda _{A}\pm \sqrt{\lambda _{C}}.\nonumber \end{aligned}$$
(44)

The minima of \(S_{rel}\) must satisfy the equation:

$$\begin{aligned} \frac{\partial S_{rel}(\theta ,\theta ,\phi _{1},\phi _{2})}{\partial \theta }=0, \end{aligned}$$
(45)

which can be rewritten as follows:

$$\begin{aligned} \frac{\partial S_{rel}}{\partial \lambda _{A}}\frac{\partial \lambda _{A}}{\partial \theta }+\frac{\partial S_{rel}}{\partial \lambda _{B}} \frac{\partial \lambda _{B}}{\partial \theta }+\sum _{i=1}^{4} \frac{\partial S_{rel}}{\partial \lambda _{i}} \frac{\partial \lambda _{i}}{\partial \theta }=0. \end{aligned}$$
(46)

The derivatives of the \(\lambda _{j}\) appearing in Eq. (46) are given by:

$$\begin{aligned} \frac{\partial \lambda _{A}}{\partial \theta }&=-4a_{1}\cos (2\theta )\sin (2\theta )\nonumber \\ \frac{\partial \lambda _{B}}{\partial \theta }&=+4a_{1}\cos (2\theta )\sin (2\theta )\nonumber \\ \frac{\partial \lambda _{C}}{\partial \theta }&=\frac{9}{2}\sin ^{3}(2\theta )\cos (2\theta )f(\phi _{1},\phi _{2})\\ \frac{\partial \lambda _{1,2}}{\partial \theta }&=\frac{\partial \lambda _{B}}{\partial \theta }\pm \frac{16a_{1}^{2}\cos (2\theta )\sin (2\theta )+\frac{\partial \lambda _{C}}{\partial \theta }}{2\sqrt{4a_{1}^{2} \cos ^{2}(2\theta )+\lambda _{C}},},\nonumber \\ \frac{\partial \lambda _{3,4}}{\partial \theta }&=\frac{\partial \lambda _{A}}{\partial \theta }\pm \frac{\frac{\partial \lambda _{C}}{\partial \theta }}{2\sqrt{\lambda _{C}},}\nonumber \end{aligned}$$
(47)

and furthermore:

$$\begin{aligned} \frac{\partial S_{rel}}{\partial \lambda _{A,B}}&=+\frac{1}{6\ln 2}(\ln \lambda _{A,B}+1)\end{aligned}$$
(48)
$$\begin{aligned} \frac{\partial S_{rel}}{\partial \lambda _{i}}&=-\frac{1}{12\ln 2}(\ln \lambda _{i}+1)\quad (i=1,2,3,4) \end{aligned}$$
(49)

Equation (46) then becomes:

$$\begin{aligned}&\cos (2\theta )\sin (2\theta )\left[ -4a_{1}\frac{\partial S_{rel}}{\partial \lambda _{A}}+4a_{1}\frac{\partial S_{rel}}{\partial \lambda _{B}}\right. \nonumber \\&\quad +\left( 4a_{1}+\frac{16a_{1}^{2}+\frac{9}{2}\sin ^{2}(2\theta ) f(\phi _{1},\phi _{2})}{2\sqrt{4a_{1}^{2}\cos ^{2}(2\theta ) +\lambda _{C}},}\right) \frac{\partial S_{rel}}{\partial \lambda _{1}}\nonumber \\&\quad +\left( 4a_{1}-\frac{16a_{1}^{2} +\frac{9}{2}\sin ^{2}(2\theta )f(\phi _{1},\phi _{2})}{2\sqrt{4a_{1}^{2}\cos ^{2}(2\theta )+\lambda _{C}},}\right) \frac{\partial S_{rel}}{\partial \lambda _{2}}\nonumber \\&\quad +\left. \left( -4a_{1}+\frac{\frac{9}{2}\sin ^{2}(2\theta ) f(\phi _{1},\phi _{2})}{2\sqrt{\lambda _{C}},}\right) \frac{\partial S_{rel}}{\partial \lambda _{3}}\right. \nonumber \\&\quad +\left. \left( -4a_{1} -\frac{\frac{9}{2}\sin ^{2}(2\theta )f(\phi _{1}, \phi _{2})}{2\sqrt{\lambda _{C}},}\right) \frac{\partial S_{rel}}{\partial \lambda _{4}}\right] =0 \end{aligned}$$
(50)

This expression shows that \(\frac{\partial S_{rel}}{\partial \theta }=0\) when \(\sin (2\theta )=0\) or \(\cos (2\theta )=0\), that is, the function can attain its minimum value for a value in the set \(\theta =0+k\frac{\pi }{2}\) or \(\theta =\frac{\pi }{4}+k\frac{\pi }{2}\), where \(k\in \mathbb {Z}\). Indeed, it can be shown that the whole l.h.s. of Eq. (50) goes to zero when \(\theta \) approaches in the limit the values listed before.

When we make the further assumption that \(\theta =\frac{\pi }{4}\) and \(\phi _{1}=0\) (as suggested by numerical calculations), we get:

$$\begin{aligned} \lambda _{A}&=3,\nonumber \\ \lambda _{B}&=3,\nonumber \\ \lambda _{C}&=\frac{9}{16}\, f(0,\phi _{2}),\\ f(0,\phi _{2})&=\left[ \left( c_{1}-c_{2}\right) ^{2}+4c_{2} \left( 1+\cos (\phi _{2})\right) \left( c_{2}+c_{1} \cos (\phi _{2})\right) \right] ,\nonumber \\ \lambda _{1,2}&=\lambda _{3,4}=3\pm \sqrt{\lambda _{C}},\nonumber \end{aligned}$$
(51)

and

$$\begin{aligned} S_{rel}({\textstyle \frac{\pi }{4}},{\textstyle \frac{\pi }{4}},0, \phi _{2})=1+\log _{2}3-\frac{1}{6}\sum _{i=1}^{2}\lambda _{i}\log _{2}\lambda _{i}. \end{aligned}$$
(52)

Therefore, the minimum is reached when

$$\begin{aligned} \frac{\partial S_{rel}({\textstyle \frac{\pi }{4}},{\textstyle \frac{\pi }{4}},0,\phi _{2})}{\partial \phi _{2}}=0, \end{aligned}$$
(53)

that is,

$$\begin{aligned} \frac{\partial }{\partial \phi _{2}}\left( \lambda _{1}\log _{2}\lambda _{1}+ \lambda _{2}\log _{2}\lambda _{2}\right) =0. \end{aligned}$$
(54)

With further simplifications, we get:

$$\begin{aligned} \left[ \ln \frac{\left( 3+\sqrt{\lambda _{C}}\right) }{\left( 3-\sqrt{\lambda _{C}} \right) }\frac{1}{2\ln 2\sqrt{\lambda _{C}}}\right] \frac{\partial \lambda _{C}}{\partial \phi _{2}}=0. \end{aligned}$$
(55)

The expression in the square brackets is always greater than 0, since the argument of the logarithm is always greater than 1 if \(\lambda _{C}>0\), and when \(\lambda _{C}\rightarrow 0\) the limit is finite, positive and different from zero. Therefore the extremum can be found only for:

$$\begin{aligned} \frac{\partial \lambda _{C}}{\partial \phi _{2}}=0 \quad \Longleftrightarrow \quad \frac{\partial f(0,\phi _{2})}{\partial \phi _{2}}=0, \end{aligned}$$
(56)

which leads to the final equation:

$$\begin{aligned} \sin (\phi _{2})\left( c_{2}+c_{1}+2c_{1}\cos (\phi _{2})\right) =0. \end{aligned}$$
(57)

The solutions are:

$$\begin{aligned} \sin (\phi _{2})=0\quad \text {or}\quad \cos (\phi _{2}) =\left( -\frac{c_{1}+c_{2}}{2c_{1}}\right) , \end{aligned}$$
(58)

that is,

$$\begin{aligned} \phi _{2}=0+k\pi \quad \text {or}\quad \phi _{2}=\pm \arccos \left( -\frac{c_{1}+c_{2}}{2c_{1}}\right) +2k\pi , \end{aligned}$$
(59)

where \(k\in \mathbb {Z}\). Clearly, the second set of extrema exists only if:

$$\begin{aligned} -1\le -\frac{c_{1}+c_{2}}{2c_{1}}\le +1\quad \Rightarrow \quad {\left\{ \begin{array}{ll} c_{1}>0\quad \text {and}\quad &{} -3c_{1}\le c_{2}\le c_{1}\\ c_{1}<0\quad \text {and}\quad &{} c_{1}\le c_{2}\le -3c_{1} \end{array}\right. }. \end{aligned}$$
(60)

Appendix 3: Comparison between \(S_{2}\) and \(S_{3}\)

When \(\theta ={\textstyle \frac{\pi }{4}}\) and \(\phi _{1}=0\), the expression for \(S_{rel}\) can be written as:

$$\begin{aligned} S_{rel}({\textstyle \frac{\pi }{4}},{\textstyle \frac{\pi }{4}},0,\phi _{2})&= 1+\log _{2}3-\frac{1}{6}\left[ \left( 3+\sqrt{\lambda _{C}}\right) \log _{2}\left( 3+\sqrt{\lambda _{C}}\right) \right. \nonumber \\&+\left. \left( 3-\sqrt{\lambda _{C}}\right) \log _{2}\left( 3-\sqrt{\lambda _{C}}\right) \right] \nonumber \\&= 1-\frac{1}{2}\left[ \left( 1+\frac{1}{3}\sqrt{\lambda _{C}}\right) \log _{2}\left( 1+\frac{1}{3}\sqrt{\lambda _{C}}\right) \right. \nonumber \\&+\left. \left( 1-\frac{1}{3}\sqrt{\lambda _{C}}\right) \log _{2}\left( 1-\frac{1}{3}\sqrt{\lambda _{C}}\right) \right] \nonumber \\&= 1-\frac{1}{2}\varepsilon \left( \frac{1}{3}\sqrt{\lambda _{C}}\right) , \end{aligned}$$
(61)

where \(\varepsilon (x)\) is given by (26). The function \(S(x)=1-\frac{1}{2}\varepsilon (x)\) is known in the literature as an estimator of correlations and relative entropies in bipartite systems [24], and its expression holds only for \(-1\le x\le 1\) (in our case it is always \(x>0\)). Due to its symmetry properties, \(S(x)\) has its maximum value for \(x=0\) and decreases monotonically as \(x\) approaches \(1\) (or \(-1\)). Therefore, we conclude that:

$$\begin{aligned} S(x_{1})<S(x_{2})\Longleftrightarrow x_{1}>x_{2}\quad \forall x_{1},x_{2}\ge 0 \end{aligned}$$
(62)

If \(\phi _{2}=0\), then \(\lambda _{C}\) takes the following value:

$$\begin{aligned} \lambda _{C}=\frac{9}{16}\, f(0,0)=\frac{9}{16}(3c_{2}+c_{1})^{2}, \end{aligned}$$
(63)

and the corresponding expression for \(S_{rel}\) is:

$$\begin{aligned} S_{2}=S_{rel}({\textstyle \frac{\pi }{4}},{\textstyle \frac{\pi }{4}},0,0)=1-\frac{1}{2}\varepsilon \left( \frac{|3c_{2}+c_{1}|}{4}\right) =1-\frac{1}{2}\varepsilon \left( \frac{3c_{2}+c_{1}}{4}\right) \end{aligned}$$
(64)

The \(\lambda _{C}\) expression for \(\phi _{2}=\bar{\phi }_{2}=\arccos \left( -\frac{c_{1}+c_{2}}{2c_{1}}\right) \) is the following one:

$$\begin{aligned} \lambda _{C}=\frac{9}{16}\, f(0,\bar{\phi }_{2})=\frac{9}{16}\frac{\left( c_{1}-c_{2}\right) ^{3}}{c_{1}}, \end{aligned}$$
(65)

which appears under a square root (for a real eigenvalue), and therefore is acceptable only if:

$$\begin{aligned} \frac{\left( c_{1}-c_{2}\right) }{c_{1}}\ge 0\quad \Rightarrow \quad {\left\{ \begin{array}{ll} c_{1}\ge c_{2} &{} \,\text {if}\,\; c_{1}>0\\ c_{1}\le c_{2}. &{} \,\text {if}\,\; c_{1}<0 \end{array}\right. }. \end{aligned}$$
(66)

The corresponding expression for \(S_{rel}\) becomes:

$$\begin{aligned} S_{3}=S_{rel}({\textstyle \frac{\pi }{4}},{\textstyle \frac{\pi }{4}},0,\bar{\phi }_{2})=1-\frac{1}{2}\varepsilon \left( {\textstyle \frac{1}{4}\sqrt{\frac{\left( c_{1}-c_{2}\right) ^{3}}{c_{1}}}}\right) \end{aligned}$$
(67)

When both \(S_{2}\) and \(S_{3}\) expressions are well defined (see Eq. (24)), then the absolute minimum of \(S_{rel}\) can occur only in the lowest of these two values, and according to Eq. (62) we conclude that

$$\begin{aligned} S_{3}<S_{2}\Longleftrightarrow \frac{\left( c_{1}-c_{2}\right) ^{3}}{c_{1}}>(3c_{2}+c_{1})^{2}\Longleftrightarrow c_{1}\cdot c_{2}<0. \end{aligned}$$
(68)

Now, collecting together the last Eq. (68) and the existence conditions for \(S_{3}\) (Eqs. (60) and (66)), we conclude that:

$$\begin{aligned} S_{3}<S_{2}\Longleftrightarrow c_{1}\cdot c_{2}<0\quad \text {and}\quad |c_{2}|\le |3c_{1}|. \end{aligned}$$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beggi, A., Buscemi, F. & Bordone, P. Analytical expression of genuine tripartite quantum discord for symmetrical X-states. Quantum Inf Process 14, 573–592 (2015). https://doi.org/10.1007/s11128-014-0882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0882-z

Keywords

Navigation