Skip to main content
Log in

Efficient quantum algorithms to construct arbitrary Dicke states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study several quantum algorithms toward the efficient construction of arbitrary arbitrary Dicke state. The proposed algorithms use proper symmetric Boolean functions that involve manipulation with Krawtchouk polynomials. Deutsch–Jozsa algorithm, Grover algorithm, and the parity measurement technique are stitched together to devise the complete algorithm. In addition to that we explore how the biased Hadamard transformation can be utilized into our strategy, motivated by the work of Childs et al. (Quantum Inf Comput 2(3):181–191, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cabello, A.: Bell’s theorem with and without inequalities for the three-qubit Greenberger–Horne–Zeilinger and w states. Phys. Rev. A 65, 032108 (2002)

    Article  ADS  Google Scholar 

  2. Childs, A.M., Farhi, E., Goldstone, J., Gutmann, S.: Finding cliques by quantum adiabatic evolution. Quantum Inf. Comput. 2(3), 181–191 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Chiuri, A., Greganti, C., Paternostro, M., Vallone, G., Mataloni, P.: Experimental quantum networking protocols via four-qubit hyperentangled dicke states. Phys. Rev. Lett. 109, 173604 (2012)

    Article  ADS  Google Scholar 

  4. Chiuri, A., Vallone, G., Bruno, N., Macchiavello, C., Bruß, D., Mataloni, P.: Hyperentangled mixed phased dicke states: optical design and detection. Phys. Rev. Lett. 105, 250501 (2010)

  5. Demenkov, E., Kojevnikov, A., Kulikov, A., Yaroslavtsev, G.: New upper bounds on the boolean circuit complexity of symmetric functions. Inf. Process. Lett. 110(7), 264–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 439(1907), 553–558 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  8. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled w state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  10. Feinsilver, P., Kocik, J.: Krawtchouk matrices from classical and quantum random walks. Contemp. Math. 287, 83–96 (2001)

  11. Feinsilver, P., Fitzgerald, R.: The spectrum of symmetric krawtchouk matrices. Linear Algebra Its Appl. 235, 121–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York, NY, USA (1996)

  13. Gühne, O., Bodoky, F., Blaauboer, M.: Multiparticle entanglement under the influence of decoherence. Phys. Rev. A 78, 060301 (2008)

    Article  Google Scholar 

  14. Hong, J., Lee, H.-W.: Quasideterministic generation of entangled atoms in a cavity. Phys. Rev. Lett. 89, 237901 (2002)

    Article  ADS  Google Scholar 

  15. Ionicioiu, R., Popescu, A.E., Munro, W.J., Spiller, T.P.: Generalized parity measurements. Phys. Rev. A 78(5), 052326 (2008)

    Article  ADS  Google Scholar 

  16. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

  18. Kiess, T.E., Shih, Y.H., Sergienko, A.V., Alley, C.O.: Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by type-ii parametric down-conversion. Phys. Rev. Lett. 71, 3893–3897 (1993)

    Article  ADS  Google Scholar 

  19. Koashi, M., Bužek, V., Imoto, N.: Entangled webs: tight bound for symmetric sharing of entanglement. Phys. Rev. A 62, 050302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. Kobayashi, T., Ikuta, R., Zdemir, A.K, Tame, M., Yamamoto, T., Koashi, M., and Imoto, N.: Universal gates for transforming multipartite entangled dicke states. New J. Phys. 16(2), 023005 (2014)

  21. Krasikov, I., Litsyn, S.: On integral zeros of krawtchouk polynomials. J. Comb. Theory Ser. A 74(1), 71–99 (1996)

  22. Linington, I.E., Vitanov, N.V.: Decoherence-free preparation of dicke states of trapped ions by collective stimulated raman adiabatic passage. Phys. Rev. A 77, 062327 (2008)

    Article  ADS  Google Scholar 

  23. Linington, I.E., Vitanov, N.V.: Robust creation of arbitrary-sized dicke states of trapped ions by global addressing. Phys. Rev. A 77, 010302 (2008)

    Article  ADS  Google Scholar 

  24. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2 ed. North-Holland, Amsterdam (1978)

  25. Maitra, S., Mukhopadhyay, P.: The Deutsch–Jozsa algorithm revisted in the domain of cyrptographically significant boolean functions. Int. J. Quantum Inf. 03(02), 359–370 (2005)

    Article  Google Scholar 

  26. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1 ed. Cambridge University Press, Cambridge (2000)

  28. Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Experimental realization of dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

    Article  ADS  Google Scholar 

  29. Retzker, A., Solano, E., Reznik, B.: Tavis–Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 75, 022312 (2007)

    Article  ADS  Google Scholar 

  30. Sarkar, S., Maitra, S.: Efficient search for symmetric Boolean functions under constraints on Walsh spectrum values. J. Comb. Math. Comb. Comput. 68, 163–191 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Stockton, J.K., van Handel, R., Mabuchi, H.: Deterministic Dicke-state preparation with continuous measurement and control. Phys. Rev. A 70, 022106 (Aug 2004)

  32. Thiel, C., von Zanthier, J., Bastin, T., Solano, E., Agarwal, G.S.: Generation of symmetric Dicke states of remote qubits with linear optics. Phys. Rev. Lett. 99, 193602 (Nov 2007)

  33. Unanyan, R.G., Fleischhauer, M.: Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions. Phys. Rev. Lett. 90, 133601 (Apr 2003)

  34. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (Jul 2009)

  35. Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Experimental entanglement of a six-photon symmetric dicke state. Phys. Rev. Lett. 103(2), 020504 (2009)

    Article  ADS  Google Scholar 

  36. Xiao, Y.-F., Zou, X.-B., Guo, G.-C.: Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics. Phys. Rev. A 75, 012310 (Jan 2007)

  37. Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Briegel, H.J., Pan, J.-W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 6995, 54–58 (2004)

    Article  ADS  Google Scholar 

  38. Zou, X., Pahlke, K., Mathis, W.: Generation of arbitrary superpositions of the dicke states of excitons in optically driven quantum dots. Phys. Rev. A 68, 034306 (Sep 2003)

Download references

Acknowledgments

Kaushik Chakraborty and Subhamoy Maitra acknowledge the Centre of Excellence in Cryptology, Indian Statistical Institute for supporting this work. Arpita Maitra acknowledges the WOS-A fellowship granted by Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Soo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Choi, BS., Maitra, A. et al. Efficient quantum algorithms to construct arbitrary Dicke states. Quantum Inf Process 13, 2049–2069 (2014). https://doi.org/10.1007/s11128-014-0797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0797-8

Keywords

Navigation