Skip to main content
Log in

Quantum network dense coding via continuous-variable graph states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a dense coding network based on continuous-variable graph state along with its corresponding protocol. A scheme to distill bipartite entanglement between two arbitrary modes in a graph state is provided in order to realize the dense coding network. We also analyze the capacity of network dense coding and provide a method to calculate its maximum mutual information. As an application, we analyze the performance of dense coding in a square lattice graph state network. The result showed that the mutual information of the dense coding is not largely affected by the complexity of the network. We conclude that the performance of dense coding network is very optimistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Su, X., Jing, J., Pan, Q., Xie: Dense-coding quantum key distribution based on continuous-variable entanglement. C Phys. Rev. A 74, 062305 (2006)

  4. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  5. Zhang, J., Xie, C., Peng, K.: Controlled dense coding for continuous variables using three-particle entangled states. Phys. Rev. A 66, 032318 (2002)

    Article  ADS  Google Scholar 

  6. Lee, H.J., Ahn, D., Hwang, S.W.: Dense coding in entangled states. Phys. Rev. A 66, 024304 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  8. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright Einstein–Podolsky–Rosen beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  9. Jing, J., Zhang, J., Yan, Y., Zhao, F., Xie, C., Peng, K.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  10. Pereira, S.F., Ou, Z.Y., Kimble, H.J.: Phys. Rev. A 62, 042311 (2000)

    Article  ADS  Google Scholar 

  11. Huang, C.Y., Ching, YuI, Lin, F.L., Hsu, L.Y.: Quantum communication with correlated nonclassical states. Phys. Rev. A 79, 052306 (2009)

    Article  ADS  Google Scholar 

  12. Ren, L., He, G., Zeng, G.: Universal teleportation via continuous-variable graph states. Phys. Rev. A 78, 042302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Qian, Y., Shen, Z., He, G., Zeng, G.: Quantum-cryptography network via continuous-variable graph states. Phys. Rev. A 86, 052333 (2012)

    Article  ADS  Google Scholar 

  14. Tan, A., Wang, Y., Jin, X., Su, X., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables. Phys. Rev. A 78, 013828 (2008)

    Article  ADS  Google Scholar 

  15. Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  16. Hein, M., Eisert, J., Briegel, H.J.: Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Menicucci, N.C., Loock, P.V., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)

    Article  ADS  Google Scholar 

  18. Zhang, J., Braunstein, S.L.: Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 73, 032318 (2006)

    Article  ADS  Google Scholar 

  19. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We thank Jun Zhang, Yujin Qian and Yadong Wu for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grants No. 61102053), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, SMC Excellent Young Faculty program (2011) and and SJTU PRP (Grants No. T03013002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., He, G. Quantum network dense coding via continuous-variable graph states. Quantum Inf Process 13, 2437–2450 (2014). https://doi.org/10.1007/s11128-014-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0793-z

Keywords

Navigation