Skip to main content
Log in

A quantum model for autonomous learning automata

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The idea of information encoding on quantum bearers and its quantum-mechanical processing has revolutionized our world and brought mankind on the verge of enigmatic era of quantum technologies. Inspired by this idea, in present paper, we search for advantages of quantum information processing in the field of machine learning. Exploiting only basic properties of the Hilbert space, superposition principle of quantum mechanics and quantum measurements, we construct a quantum analog for Rosenblatt’s perceptron, which is the simplest learning machine. We demonstrate that the quantum perceptron is superior to its classical counterpart in learning capabilities. In particular, we show that the quantum perceptron is able to learn an arbitrary (Boolean) logical function, perform the classification on previously unseen classes and even recognize the superpositions of learned classes—the task of high importance in applied medical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Georgescu, I.M., Ashhab S., Nori, F.: Quantum simulation. Rev. Mod. Phys. (2014, in press)

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)

    Article  ADS  MATH  Google Scholar 

  6. Kecman, V.: Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, Cambridge (2001)

    Google Scholar 

  7. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New Jersey (2009)

    Google Scholar 

  8. Menneer, T., Narayanan, A.: Quantum-Inspired Neural Networks, Tech. Rep. R329, Univ. of Exeter (1995)

  9. Andrecut, M., Ali, M.K.: A quantum perceptron. Int. J. Mod. Phys. B 16, 639–645 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Kouda, N., Matsui, N., Nishimura, H., Peper, F.: Qubit neural network and its learning efficiency. Neural Comput. Appl. 14, 114–121 (2005)

    Article  Google Scholar 

  11. Zhou, R., Qin, L., Jiang, N.: Quantum perceptron network. LNCS 4131, 651–657 (2006)

    Google Scholar 

  12. Zhou, R., Ding, Q.: Quantum M–P neural network. Int. J. Theor. Phys. 46, 3209–3215 (2007)

    Article  MATH  Google Scholar 

  13. Manzano, D., Pawlowski, M., Brukner, C.: The speed of quantum and classical learning for performing the kth root of NOT. New. J. Phys. 11, 113018 (2009)

    Article  ADS  Google Scholar 

  14. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  15. Rosenblatt, F.: The Perceptron—A Perceiving and Recognizing Automaton, Rep. 85–460-1, Cornell Aeronautical Laboratory, New York (1957)

  16. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  17. Parker, P., Englehart, K., Hugdins, B.: Control of Upper Limb Prosthesis, 1st edn. Wiley-IEEE Press, New York (2004)

    Google Scholar 

  18. Jiang, N., Dosen, S., Müller, K.-R., Farina, D.: Myoelectric control of artificial limbs is there a need to change focus? IEEE Signal Process. Mag. 29, 147–150 (2012)

    ADS  Google Scholar 

  19. Siomau, M., Jiang, N.: Myoelectric Control of Artificial Limb by, Quantum Information Processing, arXiv:1302.3934

Download references

Acknowledgments

I thank Ning Jiang and Dario Farina for discussions. A part of this work has been done during my visit to the Department of Neurorehabilitation Engineering, Georg-August University Medical Center Göttingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Siomau.

Additional information

This work is supported by KACST under research Grant No. 34-37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siomau, M. A quantum model for autonomous learning automata. Quantum Inf Process 13, 1211–1221 (2014). https://doi.org/10.1007/s11128-013-0723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0723-5

Keywords

Navigation