Skip to main content
Log in

Systems with stationary distribution of quantum correlations: open spin-1/2 chains with \(XY\) interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although quantum correlations in a quantum system are characterized by the evolving quantities (which are entanglement and discord usually), we reveal such basis (i.e. the set of virtual particles) for the representation of the density matrix that the entanglement and/or discord between any two virtual particles in such representation are stationary. In particular, dealing with the nearest neighbor approximation, this system of virtual particles is represented by the \(\beta \)-fermions of the Jordan–Wigner transformation. Such systems are important in quantum information devices because the evolution of quantum entanglement/discord leads to the problems of realization of quantum operations. The advantage of stationary entanglement/discord is that they are completely defined by the initial density matrix and by the Hamiltonian governing the quantum dynamics in the system under consideration. Moreover, using the special initial condition together with the special system’s geometry, we construct large cluster of virtual particles with the same pairwise entanglement/discord. In other words, the measure of quantum correlations is stationary in this system and correlations are uniformly “distributed” among all virtual particles. As examples, we use both homogeneous and non-homogeneous spin-1/2 open chains with XY-interaction although other types of interactions might be also of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  2. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  3. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Doronin, S.I., Pyrkov, A.N., Fel’dman, E.B.: Entanglement in alternating open chains of nuclear spins s = 1/2 with the XY Hamiltonian. JETP Lett. 85, 519 (2007)

    Article  Google Scholar 

  6. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. (Leipzig) 9, 855 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  11. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  12. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010); Erratum: Phys. Rev. A 82, 069902(E) (2010)

    Google Scholar 

  13. Xu, J.-W.: Geometric measure of quantum discord over two-sided projective measurements. arXiv:1101.3408 [quant-ph] (2011)

  14. Bang-Fu, D., Xiao-Yun, W., He-Ping, Z.: Quantum and classical correlations for a two-qubit X structure density matrix. Chin. Phys. B 20(10), 100302 (2011)

    Article  Google Scholar 

  15. Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Clarendon Press, Oxford (1970)

    Google Scholar 

  16. Kuznetsova, E.I., Zenchuk, A.I.: Quantum discord versus second-order MQ NMR coherence intensity in dimers. Phys. Lett. A 376, 1029 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  18. Zhang, S., Meier, B.H., Ernst, R.R.: Polarization echoes in NMR. Phys. Rev. Lett. 69, 2149 (1992)

    Article  ADS  Google Scholar 

  19. Fel’dman, E.B., Brüschweiler, R., Ernst, R.R.: From regular to erratic quantum dynamics in long spin 1/2 chains with an XY hamiltonian. Chem. Phys. Lett. 294, 297 (1998)

    Article  ADS  Google Scholar 

  20. Fel’dman, E.B., Zenchuk, A.I.: Quantum correlations in different density-matrix representations of spin-1/2 open chain. Phys. Rev. A 86, 012303 (2012)

    Article  ADS  Google Scholar 

  21. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  22. Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)

    Article  MathSciNet  ADS  Google Scholar 

  24. Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  25. Fel’dman, E.B., Kuznetsova, E.I., Zenchuk, A.I.: High-probability state transfer in spin-1/2 chains: analytical and numerical approaches. Phys. Rev. A 82, 022332 (2010)

    Article  ADS  Google Scholar 

  26. Zenchuk, A.I.: Unitary invariant discord as a measures of bipartite quantum correlations in an N-qubit quantum system. Quant. Inf. Proc. 11(6), 1551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jordan, P., Wigner, E.: Über das paulische äquivalenzverbot. Z. Phys. 47, 631 (1928)

    Article  ADS  MATH  Google Scholar 

  28. Dugić, M., Jeknić, J.: What is “system”: some decoherence-theory arguments. Int. J. Theor. Phys. 45(12), 2249 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Dugić, M., Jeknić-Dugić, J.: What is “system”: the information-theoretic arguments. Int. J. Theor. Phys. 47, 805 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arsenijevic, M., Jeknic-Dugic, J., Dugic, M.: Asymptotic dynamics of the alternate degrees of freedom for a two-mode system: an analytically solvable model. Chin. Phys. B 22, 020302 (2013)

    Article  ADS  Google Scholar 

  31. Dugic, M., Arsenijevic, M., Jeknic-Dugic, J.: Quantum correlations relativity for continuous variable systems. arXiv:1112.5797 [quant-ph] (2011)

  32. Arsenijevic, M., Jeknic-Dugic, J., Dugic, M.: A limitation of the Nakajima–Zwanzig projection method. arXiv:1301.1005 [quant-ph] (2013)

  33. Lychkovskiy, O.: Dependence of decoherence-assisted classicality on the way a system is partitioned into subsystems. Phys. Rev. A 87, 022112 (2013)

    Article  ADS  Google Scholar 

  34. Doronin, S.I., Fel’dman, E.B., Zenchuk, A.I.: Relationship between probabilities of the state transfers and entanglements in spin systems with simple geometrical configurations. Phys. Rev. A 79, 042310 (2009)

    Article  ADS  Google Scholar 

  35. Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)

    Article  ADS  Google Scholar 

  36. Fel’dman, E.B., Zenchuk, A.I.: Asymmetry of bipartite quantum discord. JETP Lett. 93, 459 (2011)

    Article  ADS  Google Scholar 

  37. Fel’dman, E.B., Rudavets, M.G.: Exact results on spin dynamics and multiple quantum NMR dynamics in alternating spin-1/2 chains with XY Hamiltonian at high temperatures. JETP Lett. 81, 47 (2005)

    Article  ADS  Google Scholar 

  38. Pachos, J.K., Knight, P.L.: Quantum computation with a one-dimensional optical lattice. Phys. Rev. Lett. 91, 107902 (2003)

    Article  ADS  Google Scholar 

  39. Doronin, S.I., Zenchuk, A.I.: High-probability state transfers and entanglements between different nodes of the homogeneous spin-1/2 chain in an inhomogeneous external magnetic field. Phys. Rev. A 81, 022321 (2010)

    Article  ADS  Google Scholar 

  40. Kuznetsova, E.I., Fel’dman, E.B.: Exact solutions in the dynamics of alternating open chains of spins \(\text{ s } = 1/2\) with the XY Hamiltonian and their application to problems of multiple-quantum dynamics and quantum information theory. J. Exp. Theor. Phys. 102, 882 (2006)

    Article  ADS  Google Scholar 

  41. Feldman, K.E.: Exact diagonalization of the XY-Hamiltonian of open linear chains with periodic coupling constants and its application. J. Phys. A: Math. Gen. 39(5), 1039 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Program of the Presidium of RAS No. 8 ”Development of methods of obtaining chemical compounds and creation of new materials” and by the Russian Foundation for Basic Research, Grant No. 13-03-00017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Appendix: Minimization in Eq. (19)

Appendix: Minimization in Eq. (19)

Let us show that the minimum in Eq. (19) corresponds to \(\eta =0\), similar to ref. [20]. Equations (21) and (22) at \(\eta =0\) yield

$$\begin{aligned}&p_i(0) \equiv p_i|_{\eta =0}=\frac{1}{2}, \end{aligned}$$
(67)
$$\begin{aligned}&\theta _i(0)\equiv \theta _i|_{\eta =0}=2 \sqrt{\rho _{nn}\rho _{mm} +\frac{1}{4}(1-2\rho _{mm})^2},\quad i=0,1. \end{aligned}$$
(68)

Consequently, using the definition of \(S_i\) given by Eq. (20), we conclude that \(S_1|_{\eta =0}=S_0|_{\eta =0} \equiv S(\theta _0(0))\) and

$$\begin{aligned} (p_0S_0 +p_1 S_1)|_{\eta =0} = 2 p_0(0) S(\theta _0(0))= S(\theta _0(0)) = S\left( 2 \sqrt{\rho _{nn}\rho _{mm} +\frac{1}{4}(1-2\rho _{mm})^2} \right) \qquad \quad \end{aligned}$$
(69)

Similarly, Eqs. (21) and (22) at \(\eta =1\) yield

$$\begin{aligned}&p_0(1)=1-\rho _{nn},\quad p_1(1)=\rho _{nn}, \end{aligned}$$
(70)
$$\begin{aligned}&\theta _0(1)= \frac{|1-2\rho _{mm}-\rho _{nn}|}{1-\rho _{nn}} \end{aligned}$$
(71)
$$\begin{aligned}&\theta _1(1)=1. \end{aligned}$$
(72)

Again, using the definition of \(S_i\) given by Eq. (20) we have \(S_1|_{\eta =1}=0\) and we can write

$$\begin{aligned} (p_0S_0 +p_1 S_1)|_{\eta =1} = p_0(1) S(\theta _0(1)) = (1-\rho _{nn}) S\left( \frac{|1-2\rho _{mm}-\rho _{nn}|}{1-\rho _{nn}}\right) . \end{aligned}$$
(73)

Thus we have to find the minimum of two quantities:

$$\begin{aligned} \min \left( S\left( 2 \sqrt{\rho _{nn}\rho _{mm} +\frac{1}{4}(1-2\rho _{mm})^2} \right) , (1-\rho _{nn}) S\left( \frac{|1-2\rho _{mm}-\rho _{nn}|}{1-\rho _{nn}}\right) \right) .\nonumber \\ \end{aligned}$$
(74)

Representing the ratio of these two quantities as a two-dimensional surface in the space of the parameters \(\rho _{nn}\) and \(\rho _{mm}\) (\(\rho _{nn},\rho _{mm}\le 1, \rho _{nn}+\rho _{mm} \le 1\)) we conclude that the first of them (corresponding to \(\eta =0\)) is always less than the second one. Consequently the minimum in Eq. (19) is always at \(\eta =0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fel’dman, E.B., Zenchuk, A.I. Systems with stationary distribution of quantum correlations: open spin-1/2 chains with \(XY\) interaction. Quantum Inf Process 13, 201–225 (2014). https://doi.org/10.1007/s11128-013-0643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0643-4

Keywords

Navigation